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PREFACE.

In the early part of this century it was possible for an in-

dustrious student to acquire a comprehensive if not minute

knowledge of the entire realm of mathematical science. The
more eminent minds of that time, like Lagrange, Laplace, and

Gauss, were about equally familiar with all branches of pure
and applied mathematics. Since that epoch the tendency has

been constantly towards specialization ;
and additions to pure

theory along with extensions of applications have been made
with increasing rapidity, until now the mere quantity of in-

formation available presents a formidable obstacle to the simul-

taneous attainment of the breadth and depth of knowledge
which characterized the mathematician of a generation ago.

It would appear, however, that this obstacle is due to the

bewildering mass of details rather than to any considerable

increase in the number of fundamental principles. Hence the

student who seeks to gain a comprehensive view of the mathe-

matics of the present day needs most of all that sort of guid-

ance which fixes his attention on essentials and prevents him

from wasting valuable time and energy in the pursuit of non-

essentials.

During the past twenty years a marked change of opinion

has occurred as to the aims and methods of mathematical

instruction. The old ideas that mathematical studies should

be pursued to discipline the mind, and that such studies were

ended when an elementary course in the calculus had been

covered, have for the most part disappeared. In our best

classical and engineering colleges the elementary course in

ill
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calculus is now given in the sophomore year, while lectures and

seminary work in pure mathematics are continued during the

junior and senior years. It is with the hope of meeting the

existing demand for a suitable text to be used in such upper-

class work that the editors enlisted the cooperation of the

authors in the task of bringing together the chapters of this

book. Each chapter, so far as it goes, is complete in itself,

and is intended primarily to give a clear idea of the leading

principles of the subject treated. While the authors have been

guided by general instructions issued by the editors, each has

been free to follow his own plan of treatment. It will be found

that certain chapters adopt the formal method usual in text-

books, while others employ what may be called the historical

and intuitive method. A glance at the table of contents will

show that the chapters of the work present a considerable

variety of subjects, thus affording teachers and students an

opportunity to select such topics as maybe suited to their time

and tastes. Numerous problems are given for solution, numer-

ical examples of the application of theory to physical science

are freely introduced, and the footnotes set forth much sug-

gestive matter of a historical and critical nature.

The Editors.

NOTE TO THE SECOND EDITION.

THIS edition differs from the first only in the correction of

those typographic errors which have been detected and in the

alteration of a few paragraphs which seemed obscure. Readers

of this edition are requested to bring to the notice of the editors

any remaining errors which may be discovered.

January i, 1898.
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HIGHER MATHEMATICS

Chapter I.

THE SOLUTION OF EQUATIONS.

By Mansfield Merriman,

Professor of Civil Engineering in Lehigh University.

Art. 1. Introduction.

In this Chapter will be presented a brief outline of methods,
not commonly found in text-books, for the solution of an

equation containing one unknown quantity. Graphic, numeric,

and algebraic solutions will be given by which the real roots

of both algebraic and transcendental equations may be ob-

tained, together with historical information and theoretic

discussions.

An algebraic equation is one that involves only the opera-

tions of arithmetic. It is to be first freed from radicals so as

to make the exponents of the unknown quantity all integers;

the degree of the equation is then indicated by the highest ex-

ponent of the unknown quantity. The algebraic solution of an

algebraic equation is the expression of its roots in terms of

the literal coefficients ;
this is possible, in general, only for linear,

quadratic, cubic, and quartic equations, that is, for equations

of the first, second, third, and fourth degrees. A numerical

equation is an algebraic equation having all its coefficients real

numbers, either positive or negative. For the four degrees
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above mentioned the roots of numerical equations may be

computed from the formulas for the algebraic solutions, unless

they fall under the so-called irreducible case wherein real

quantities are expressed in imaginary forms.

An algebraic equation of the nth
degree may be written

with all its terms transposed to the first member, thus :

xn + a
x
xn- x

-j-
a

1
xn ~'i

-f- . . . -f- an- x
x+ an o,

and, for brevity, the first member will be called f(x) and the

equation be referred to as f(x) = o. The roots of this equa-

tion are the values of x which satisfy it, that is, those values of

x that reduce f(x) to o. When all the coefficients alt ati . . .aM

are real, as will always be supposed to be the case, Sturm's

theorem gives the number of real roots, provided they are un-

equal, as also the number of real roots lying between two

assumed values of x, while Horner's method furnishes a con-

venient process for obtaining the values of the roots to any

required degree of precision.

A transcendental equation is one involving the operations

of trigonometry or of logarithms, as, for example, ^-(~ COS;tr
>

or a2x -\- xb* = o. No general method for the literal solution

of these equations exists
;
but when all known quantities are

expressed as real numbers, the real roots may be located and

computed by tentative methods. Here also the equation may
be designated asf(x) = o, and the discussions in Arts. 2-5 will

apply equally well to both algebraic and transcendental forms.

The methods to be given are thus, in a sense, more valuable

than Sturm's theorem and Horner's process, although for

algebraic equations they may be somewhat longer. It should

be remembered, however, that algebraic equations higher than

the fourth degree do not often occur in physical problems, and

that the value of a method of solution is to be measured not

merely by the rapidity of computation, but also by the ease

with which it can be kept in mind and applied.

Prob. 1. Reduce the equation (a + x)* + ( x)l
= 2b to an

equation having the exponents of the unknown quantity all integers.
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Art. 2. Graphic Solutions.

Approximate values of the real roots of two simultaneous

algebraic equations may be found by the methods of plane
analytic geometry when the coefficients are numerically
expressed. For example, let the given equations be

**+y = a\ x* - bx =y -
cy,

the first representing a circle and the second a hyperbola.

Drawing two rectangular axes OX and OY, the circle is de-

scribed from O with the radius a. The coordinates of the

center of the hyperbola are found to be OA = \b and AC = \c,

while its diameter BD = *J& c\ from which the two
branches may be described.

The intersections of the circle

with the hyperbola give the

real values of x and y. If

^ = I, = 4, and c 3, there

are but two real values for x
and two real values for y,

since the circle intersects but

one branch of the hyperbola ;

here Om is the positive and

Op the negative value of x, while rnn is the positive and pq
the negative value of y. When the radius a is so large that

the circle intersects both branches of the hyperbola there are

four real values of both x and y.

By a similar method approximate values of the real roots of

an algebraic equation containing but one unknown quantity may
be graphically found. For instance, let the cubic equation

x3

-\- ax b = o be required to be solved.* This may be

written as the two simultaneous equations

y = x\ y = ax -\-b,

*See Proceedings of the Engineers' Club of Philadelphia, 1884, Vl IV,

pp. 47-49
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and the graph of each being plotted, the abscissas of their

points of intersection give the real roots of the cubic. The
curve y = x* should be plotted upon

I cross section paper by the help of a

\ / table of cubes ;
then OB is laid off

-J>4? equal to b, and OC equal to a/b, tak-

^___nl ing care to observe the signs of a and

b. The line joining B and C cuts

the curve at /, and hence qp is the

real root of x* -f- ax b = o. If the

cubic equation have three real roots the straight line BC will

intersect the curve in three points.

Some algebraic equations of higher degrees may be graphic-

ally solved in a similar manner. For the quartic equation

z* + Az* + Bz C = o, it is best to put z = A*x, and thus

reduce it to the form x" + #* + bx c o; then the two

equations to be plotted are

y = x* + x\ y=bx + c,

the first of which may be drawn once for all upon cross-section

paper, while the straight line represented by the second may
be drawn for each particular case, as described above.*

This method is also applicable to many transcendental equa-

tions
;

thus for the equation Ax Bs\i\x = o it is best to

write ax sin^r = o; then y = sin^r is readily plotted by help

of a table of sines, while y = ax is a straight line passing

through the origin. In the same way ax x* = o gives the

curve represented by y = a* and the parabola represented by

y = x% the intersections of which determine the real roots of

the given equation.

Prob. 2. Devise a graphic solution for finding approximate
values of the real roots of the equation x*-{- ax

3

-\- bx*-\- ex -f- d= o. \zQ.

Prob. 3. Determine graphically the number and the approximate
values of the real roots of the equation arc x 8 sin x = o.

(Ans. Six real roots, x = 159 , 430 ,
and 456 .) a^ [

* For an extension of this method to the determination of imaginary roots,

see Phillips and Beebe's iphic Algebra, New York, 1882.
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Art. 3. The Regula Falsi.

One of the oldest methods for computing the real root of

an equation is the rule known as "
regula falsi," often called

the method of double position
*

It depends upon the princi-

ple that if two numbers *, and x
% be substituted in the expres-

sion/^), and if one of these renders/^) positive and the other

renders it negative, then at least one real root of the equation

f(x) = o lies between x
x
and #s . Let the figure represent a

part of the real graph of the equation y = /{x). The point- X,
where the curve crosses the axis of abscissas, gives a real root

OX of the equation f(x) = o. Let OA and OB be inferior and

superior limits of the root OX which are determined either by
trial or by the method of Art. 5.

Let Aa and Bb be the values of

J{x) corresponding to these limits. q a

Join ad, then the intersection C of

the straight line ab with the axis

OB gives an approximate value

OC for the root. Now compute
Cc and join ac, then the intersection D gives a value OD which

is closer still to the root OX.

Let x
x
and x^ be the assumed values OA and OB, and let

Ax
i) and/(;tr2)

be the corresponding values oi f(x) represented

by Aa and Bb, these values being with contrary signs. Then

from the similar triangle AaC and BbC the abscissa OC is

x%~
A*t)-A*.)

l

^A*>)-A**)~~
*^ A**)-A*y

By a second application of the rule to x
x
and x

% ,
another value

x
K

is computed, and by continuing the process the value of x

can be obtained to any required degree of precision.

As an example let /(>) = x* + 5*
2

-f- 7 = o. Here it may
be found by trial that a real root lies between 2 and 1.8.

*This originated in India, and its first publication in Europe was by Abra-

ham ben Esra, in 1130. See Matthiesen, Grundzuge der antiken und moder-

en Algebra der litteralen Gleichungen, Leipzig, 1878. h, i~ 7 iT
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For jr,
= 2, f{x) = 5, and for *, = 1.8,/) = + 4-304;

then by the regula falsi there is found x
3
= 1.90 nearly.

Again, for x
z
=

1.90, f(xz)
= + 0.290, and these combined

with jTj and f(x^) give ;r
4
= 1.906, which is correct to the

third decimal.

As a second example let f[x) = arc;r sin x 0.5 = o.

Here a graphic solution shows that there is but one real root,,

and that the value of it lies between 85 and 86. For x, 85V

fixt) 0.01266, and for x^ = 86, /(.r2)
=

-f- 0.00342 ;
then

by the rule x
3
= 85 44', which givesf(xa)

= o 00090. Again,

combining the values for x^ and ,r
3 there is found x\ = 85 47',

which gives /(^4)
= 0.00009. Lastly, combining the values

for x^ and x
t
there is found x

b
= 8547

/

-4, which is as close an

approximation as can be made with five-place tables.

In the application of this method it is to be observed that

the signs of the values of x and f(x) are to be carefully re-

garded, and also that the values of f(x) to be combined in one

operation should have opposite signs. For the quickest

approximation the values of f{x) to be selected should be those

having the smallest numerical values.

Prob. 4. Compute by the regula falsi the real roots of x b

0.25= 0.

Also those of x* + sin 2X = o.

Art. 4. Newton's Approximation Rule.

Another useful method for approximating to the value of

the real root of an equation is that devised by Newton in 1666.*

If y =f(x) be the equation of a

curve, OX in the figure represents a

real root of the equation f(x) = o.

Let OA be an approximate value of

OX, and Aa the corresponding value

/b oif(x). At a let aB be drawn tangent

to the curve; then OB is another approximate value of OX^
* See Analysis per equationes numero terminorum infinitas, p. 269, Vol. I

of Horsely's edition of Newton's works (London, 1779), where the method is

given in a somewhat different form.
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Let Bb be the value of f(x) corresponding to OB, and at b

let the tangent bC be drawn
;
then OC is a closer approxima-

tion to OX, and thus the process may be continued.

Let/'(-*0 be the first derivative of/(jtr); ox,f\x) = df(x)/dx.

For x = x
x
= OA in the figure, the value of f(x } )

is the ordi-

nate Aa, and the value of f\x^) is the tangent of the angle

aBA
;
this tangent is also Aa/AB. Hence AB = /*,)//'(*i)

and accordingly (9j5 and (2(7 are found by

which is Newton's approximation rule. By a third application

to x%
the closer value x

A
is found, and the process may be con-

tinued to any degree of precision required.

For example, let f(x) x b + 5^
2

-}- 7 = o. The first deriv-

ative is/'(;r) = $x* -f- 10^. Here it may be found by trial that

2 is an approximate value of the real root. For x
x
= 2

/(*,) = 5, and /'(#,) = 60, whence by the rule x
a
= 1.92.

Now for x^ = 1.92 are found /(#) = 0.6599 and

f(xj) = 29052, whence by the rule x
% 1.906, which is

correct to the third decimal.

As a second example let f(x) = x* + 4 sin ;tr = o. Here

the first derivative is f\x) = 2x+ 4 cos x. An approximate

value of x found either by trial or by a graphic solution is

.*= 1.94, corresponding to about u^cx/. For .*,
= 1.94,

/(.*:,)
as 0.03304 and /'(*,) = 5-3 2 3> whence by the rule

x>= 1.934. By a second application x%
= 1.9328, which

corresponds to an angle of uo 54f
/

.

In the application of Newton's rule it is best that the

assumed value of x, should be such as to render /(*,) as small

as possible, and also /'(*,) as large as possible. The method

will fail if the curve has a maximum or minimum between a

and b. It is seen that Newton's rule, like the regula falsi,

applies equally well to both transcendental and algebraic equa-

tions, and moreover that the rule itself is readily kept in mind

by help of the diagram.
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Prob. 5. Compute by Newton's rule the real roots of the alge-

braic equation x* jx + 6 = o. Also the real roots of the trans-

cendental equation sin x -f- arc x 2 = 0.

Art. 5. Separation of the Roots.

The roots of an equation are of two kinds, real roots and

imaginary roots. Equal real roots may be regarded as a spe-

cial class, which lie at the limit between the real and the imagi-

nary. If an equation hasp equal roots of one value and q equal

roots of another value, then its first derivative equation has

p 1 roots of the first value and q 1 roots of the second

value, and thus all the equal roots are contained in a factor

common to both primitive and derivative. Equal roots may
hence always be readily detected and removed from the given

equation. For instance, let x* gx* -\- ^x -\- 12 = o, of which

the derivative equation is ^x* \%x -|~ 4 = o ; as x 2 is a

factor of these two equations, two of the roots of the primitive

equation are + 2 -

The problem of determining the number of the real and

imaginary roots of an algebraic equation is completely solved

by Sturm's theorem. If, then, two values be assigned to x the

number of real roots between those limits is found by the same

theorem, and thus by a sufficient number of assumptions limits

may be found for each real root. As Sturm's theorem is known

to all who read these pages, no applications of it will be here

given, but instead an older method due to Hudde will be

presented which has the merit of giving a comprehensive view

of the subject, and which moreover applies to transcendental

as well as to algebraic equations.*

If any equation y = fix) be plotted with values of x as

abscissas and values of y as ordinates, a real graph is obtained

whose intersections with the axis OX give the real roots of the

* Devised by Hudde in 1659 and published by Rolle in 1690. See CEuvres

de Lagrange, Vol. VIII, p. 190.
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equaf ion fix) = o. Thus in the figure the three points marked

Xg've three values OX for three real roots. The curve which

represents y = fix) has points of maxima and minima marked

A, and inflection points marked B. Now let the first deriva-

tive equation dy/dx=f'(x) be formed and be plotted in the

same manner on the axis O'X'. The condition f'(x)= o gives

the abscissas of the points A, and thus the real roots O'X' give

limits separating the real roots of fix) o. To ascertain if a

real root OX lies between two values of O'X' these two values

are to be substituted infix): if the signs oi fix) are unlike in

the two cases, a real root of fix) = o lies between the two

limits
;
if the signs are the same, a real root does not lie between

those limits.

In like manner if the second derivative equation, that is,

d*y/dx*= f"{x) f
be plotted on O"X" >

the intersections give

limits which separate the real roots of f\x) o. It is also

seen that the roots of the second derivative equation are the

abscissas of the points of inflection of the curve y = fix).

To illustrate this method let the given equation be the

quintic fix) = x* - $x* +6x + 2 = o. The first derivative

equation is /'(*) = 5x* -i$x* + 6 = o, the roots of which are

approximately - 1.59, -0.69, +0.69, 4- 1.59. Now let each

of these values be substituted for x in the given quintic, as also

the values - 00
, o, and + 00

,
and let the corresponding values

of fix) be determined as follows :
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x bs _ oo
, I.59,

-
O.69, O, + O.69, + I.59, + 00 ;

/(*)=- 00, +2.4, -0.6, +2, +4.7, +1.6, +00.

Since f{x) changes sign between x = 00 and ^ = 1.59,

one real root lies between these limits
;
since f(x) changes sign

between x
x
= 1.59 and x^ = 0.69, one real root lies between

these limits
;
since f(x) changes sign between x

%
= 0.69 and

x
%
= o, one real root lies between these limits; since f(x) does

not change sign between x
a
= o and x

A
= 00

,
a pair of imagi-

nary roots is indicated, the sum of which lies between -f- 0.69

and 00 .

As a second example let f(x) = e* e^ 4 = 0. The first

derivative equation is fix) = e* 2elx = o, which has two

roots e* = i and e* = o, the latter corresponding to ^ = 00 .

For x = 00
, /(jr) is negative; for e* = i, /(^) is negative ;

for

;r = -f- 00
, f[x) is negative. The equation ** - *** 4 = o

has, therefore, no real roots.

When the first derivative equation is not easily solved, the

second, third, and following derivatives may be taken until an

equation is found whose roots may be obtained. Then, by

working backward, limits may be found in succession for the

roots of the derivative equations until finally those of the

primative are ascertained. In many cases, it is true, this proc-

ess may prove lengthy and difficult, and in some it may fail

entirely; nevertheless the method is one of great theoretical

and practical value.

Prob. 6. Show that e
x + e~ Zx

4 = has two real roots, one

positive and one negative.

Prob. 7. Show that x* -{- x + 1 = o has no real roots; also that

x6 x 1 = o has two real roots, one positive and one negative.

Art. 6. Numerical Algebraic Equations.

An algebraic equation of the th
degree may be written

with all its terms transposed to the first member, thus :

xn + a.x"-
1+ a

u
xM~2 + . . . + an _ xx + an o

;
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arid if all the coefficients and the absolute term are real num-
bers, this is commonly called a numerical equation. The first

member may for brevity be denoted by f{x) and the equation
itself by /(V) = o.

The following principles of the theory of algebraic equations
with real coefficients, deduced in text-books on algebra, are

here recapitulated for convenience of reference :

(i) If x
x

is a root of the equation, /(*) is divisible by x x
t ;

and conversely, if f(x) is divisible by x x
lt
then x

x
is a root of the

equation.

(2) An equation of the nth
degree has n roots and no more.

(3) If x
x , x%% . . . xn are the roots of the equation, then the prod-

uct (x x
x)(x x

t )
. . . (x xn ) is equal tof(x).

(4) The sum of the roots is equal to a
x \

the sum of the prod-
ucts of the roots, taken two in a set, is equal to -f- #2 ;

the sum of

the products of the roots, taken three in a set, is equal to a
3 ; and

so on. The product of all the roots is equal to an when n is

odd, and to -f- an when n is even.

(5) The equation /(a;)
= o may be reduced to an equation lack-

ing its second term by substituting y ajn for x,*

(6) If an equation has imaginary roots, they occur in pairs of

the form/ qi where / represents y 1.

(7) An equation of odd degree has at least one real root whose

sign is opposite to that of an .

(8) An equation of even degree, having an negative, has at least

two real roots, one being positive and the other negative.

(9) A complete equation cannot have more positive roots than

variations in the signs of its terms, nor more negative roots than

permanences in signs. If all roots be real, there are as many posi-

tive roots as variations, and as many negative roots as permanences. f

(10) In an incomplete equation, if an even number of terms,

say 2w, are lacking between two other terms, then it has at least 2m

*
By substituting y1

-\-py + q for x, the quantities / and q may be determined

so as to remove the second and third terms by means of a quadratic equation,,

the second and fourth terms by means of a cubic equation, or the second and

fifth terms by means of a quartic equation.

f The law deduced by Harriot in 1631 and by Descartes in 1639.
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imaginary roots; if an odd number of terms, say 2tn -f- i, are lacking

between two other terms, then it has at least either 2tn -f- 2 or 2m

imaginary roots, according as the two terms have like or unlike

signs.*

(11) Sturm's theorem gives the number of real roots, provided

that they are unequal, as also the number of real roots lying be-

tween two assumed values of x.

(12) If ar is the greatest negative coefficient, and if as is the

greatest negative coefficient after x is changed into x, then all

real roots lie between the limits ar + 1 and (as + \}!j0ui*m&y5*7

(13) If an is the first negative and ar the greatest negative co-

efficient, then ar + 1 is a superior limit of the positive roots. If

ak be the first negative and as the greatest negative coefficient after

x is changed into x, then a* + 1 is a numerically superior limit

of the negative roots. & /v/w

(14) Inferior limits of the positive and negative roots may be

found by placing x = z~ l and thus obtaining an equation f(z) = o

whose roots are the reciprocals of f(x) = o.

(15) Horner's method, using the substitution x = z r where r

is an approximate value of x
x ,

enables the real root x
x
to be com-

puted to any required degree of precision.

The application of these principles and methods will be

familiar to all who read these pages. Horner's method may
be also modified so as to apply to the computation of imagi-

nary roots after their approximate values have been found.t

The older method of Hudde and Rolle, set forth in Art. 5, is

however one of frequent convenient application, for such alge-

braic equations as actually arise in practice. By its use,

together with principles (13) and (14) above, and the regula

falsi of Art. 3, the real roots may be computed without any

assumptions whatever regarding their values.

For example, let a sphere of diameter D and specific gravity

* Established by DuGua; see Memoirs Paris Academy, 1741, pp. 435-494.

fSheffler, Die Auflosung der algebraischen und transzeridenten Gleichung-

n, Braunschweig, 1859; and Jelink, Die Auflosung der hoheren numerischen

Gleichungen, Leipzig, 1865.
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m-
-

float in water, and let it be required to find the depth of ii

mersion. The solution of the problem gives for the depth v
the cubic equation

As a particular case let D = 2 feet and -=0.65; then the

equation
x* 3^ -f- 2.6 = o

is to be solved. The first derivative equation is 3** 6x = o
whose roots are o and 2. Substituting these, there is found
one negative root, one positive root less than 2, and one posi-

tive root greater than 2. The physical aspect of the question
excludes the first and last root, and the second isto be computed.

By (13) and (14) an inferior limit of this root is about 0.5, so

that it lies between 0.5 and 2. For x
x

= 0.5, /(jr,) = -j- 1.975,

and for x^ 2, f(xt)
= 1.4; then by the regula falsi #,= 1.35.

For x
3 =i.35,/(^,) = 0.408, and combining this with x, the

regula falsi gives x
K
= 1.204 feet

> which, except in the last

decimal, is the correct depth of immersion of the sphere.

Prob. 8. The diameter of a water-pipe whose length is 200 feet

and which is to discharge 100 cubic feet per second under a head ft> M>
of 10 feet is given by the real root of the quintic equation

38.x: 101 = o. Find the value of x.
'"
- $2. :i JL

X = 21 ^v - 3!

Art. 7. Transcendental Equations.

Rules (1) to (15) of the last article have no application to

trigonometrical or exponential equations, but the general prin-

ciples and methods of Arts. 2-5 may be always used in

attempting their solution. Transcendental equations may
have one, many, or no real roots, but those arising from prob-

lems in physical science must have at least one real root. Two

examples of such equations will be presented.

A cylinder of specific gravity g floats in water, and it is

required to find the immersed arc of the circumference. If

this be expressed in circular measure it is given by the trans-

cedental equation

f{x) x sin x 2ng = o.
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The first derivative equation is I cos x = o, whose root is

any even multiple of 2n. Substituting such multiples in f(x)

it is found that the equation has but one real root, and that

this lies between o and 2;r; substituting \n, \it% and n for x, it

is further found that this root lies between fn and n.

As a particular case let g 0.424, and for convenience in

using the tables let x be expressed in degrees; then

fix) = x 57 .2958 sin x 152 .64.

Now proceeding by the regula falsi (Art. 3) let x
x

=ss 180 and

^=135, giving /(*,) =+ 27 . 36 and /(.r2) =-58. 16, whence

x
%

166 . For x
2
= 166

, f(x3)
= o .469, and hence 166 is an

approximate value of the root. Continuing the process, x is

found to be i66.237, or in circular measure ^=2.9014 radians.

As a second example let it be required to find the horizon-

tal tension of a catenary cable whose length is 22 feet, span 20

feet, and weight 10 pounds per linear foot, the ends being sus-

pended from two points on the same level. If / be the span, s

the length of the cable, and z a length of the cable whose weight

equals the horizontal tension, the solution of the problem leads

I
L - 1

)
to the transcendental equation s= \e

2z
e

2z
f z, or inserting

the numerical values,

(10

IOV

e
7 - e~

T
)z = O

is the equation to be solved. The first derivative equation is

/ L -is\ 10/ L -i_\

/<(*) = -V -e*)+-[e>+e ')
= Q,

and this substituted in f(z) shows that one real root is less than

about 20. Assume n
x =15, then /(.s^) =0.486 and f\z x ) =0.206,

whence by Newton's rule (Art. 4) z2
= 13 nearly. Next for

z^ = 13, /(#,) = 0.0298 and f'(z9)
= 0.322, whence z

s
= 13.1.

Lastly for z
3 13. 1 f(z3) =0.0012 and /'(<&,)

= 0.3142, whence

z
K
= 13.096, which is a sufficiently close approximation. The

horizontal tension in the given catenary is hence 130.96 pounds.*

*Since e
6

e~
e

2 sinh 6, this equation may be written n0 iosinhQ,

where 6 = I02 -1
,
and the solution may be expedited by the help of tables of

hyperbolic functions. See Chapter IV.
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Prob. 9. Show that the equation 3 sin x 2x 5
= o has but

one real root, and compute its value.

Prob. 10. Find the number of real roots of the equation
2x-\- log x 10 000 = o, and show that the value of one of them is

x = 4995-74-

Art. 8. Algebraic Solutions.

Algebraic solutions of complete algebraic equations are

only possible when the degree n is less than 5. It frequently

happens, moreover, that the algebraic solution cannot be used

to determine numerical values of the roots as the formulas

expressing them are in irreducible imaginary form. Neverthe-

less the algebraic solutions of quadratic, cubic, and quartic

equations are of great practical value, and the theory of the

subject is of the highest importance, having given rise in fact

to a large part of modern algebra.

The solution of the quadratic has been known from very

early times, and solutions of the cubic and quartic equations

were effected in the sixteenth century. A complete investiga-

tion of the fundamental principles of these solutions was, how-

ever, first given by Lagrange in 1770.* This discussion showed,

if the general equation of the nth
degree, f{x) =0, be deprived

of its second term, thus giving the equation /(j) = o, that the

expression for the root y is given by

y= cos,-]- oo\ + . + oo
n
~^n-i >

in which n is the degree of the given equation, go is, in suc-

cession, each of the n th roots of unity, 1, e, e\ . . . en ~\ and

Slt sit . . . sM _, are the so-called elements which in soluble cases

are determined by an equation of the n I
th

degree. For

instance, if n = 3 the equation is of the third degree or a cubic,

the three values of 00 are

a?
t
= l, gd= -i+ i-/11! = e, go = -i-iV- 3 = e*>

* Memoirs of Berlin Academy, 1769 and 1770; reprinted in CEuvres de

Lagrange (Paris, 1868), Vol. II, pp. 539-562. See also Traite de la resolution

des 6quations numeriques, Paris, 1798 and 1808.
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and the three roots are expressed by

y% = h+ s* > y% = ^i + e\ . j3
=

iyi+ es, ,

in which 5,
3 and s

2

5
are found to be the roots of a quadratic

equation (Art. 9).

The n values of go are the n roots of the binomial equation

oo
n

1 = o. If n be odd, one of these is real and the others

are imaginary ;
if n be even, two are real and n 2 are imagi-

nary.* Thus the roots of go* 1 = o are -f- 1 and 1
; those

of go
3

1 = o are given above
;

those of go* 1 = o are

-|*- I, -f- h !> and i where i is-v/ i- For the equation

Go
b

I = o the real root is
| 1, and the imaginary roots are

denoted by e, e
2

,
e

3

,
e

4

;
to find these let go" 1 =0 be divided

by ( 1, giving
4 1 3 t 2 1 I

GO -\-GO-\-GO-\-GO-\-l= O,

which being a reciprocal equation can be reduced to a quad-

ratic, and the solution of this furnishes the four values,

6 =-i(l~ V~$ + V_IO-2i/

5), 6 2 =- j(l+ V5 + fC 10+2^
e* = -l(i-V S

- V-io-2Vj)> <?
3 = -i(i+ ^5 ^-10 + 2V5),

where it will be seen that e.e
4 = 1 and e

2
.e

3 = 1, as should be

the case, since e
5 = 1.

In order to solve a quadratic equation by this general

method let it be of the form

x9 + 2ax+ b = o,

and let x be replaced by y a, thus reducing it to

y _ (
a* _

b)
= o.

Now the two roots of this are yx
=

-f- s
t
and y%

= s%%
whence

the product of
(y s^) and (y -f- s

t) is

f - s
% = o.

Thus the value of j
a

is given by an equation of the first degree,

* The values of a> are, in short, those of the n " vectors
" drawn from the

center which divide a circle of radius unity into n equal parts, the first vector

GOi = 1 being measured on the axis of real quantities. See Chapter X.
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s
7 = a* b; and since x = a -\-y, the roots of the given

equation are

*x = - a+ y/d
1

-b, *9
= - a JlF^lt,

which is the algebraic solution of the quadratic.

The equation of the I
th

degree upon which the solution

of the equation of the n th
degree depends is called a resolvent.

If such a resolvent exists, the given equation is algebraically
solvable

; but, as before remarked, this is only the case for

quadratic, cubic, and quartic equations.

Prob. n. Show that the six 6 th roots of unity are -f- i,

+i(x+ v^3), -*(i- t^). ~h -i(i+ ^J, -i(i- V=^).

Art. 9. The Cubic Equation.

All methods for the solution of the cubic equation lead to

the result commonly known as Cardan's formula.* Let the

cubic be
x3

-f $ax* -f Tfix + 2c = o, (i)

and let the second term be removed by substituting y a for

x, giving the form,

y + 3fy+2c=o, (i')

in which the values of B and C are

B=-a7 + b, C=a* %ab + c. (2)

Now by the Lagrangian method of Art. 8 the values of y are

y 1
=zs

1 + S y, == es, + eV9 , 7, = e
3

^ + e^
2 ,

in which e and e
a are the imaginary cube roots of unity.

Forming the products of the roots, and remembering that

e" = I and e
a

-|- e -f-
1 = o, there are found

at* +y,y,+y>y* = - 3v. = + $b>

yj>y* = s? + s?= -2C.

For the determination of s, and s
2
there are hence two equa-

tions from which results the quadratic resolvent

s
6 + 2Cs

3 B9 = o, and thus

s
% ={-C+V& +')*> s

9
= (-C-V#+Cy. (3)

* Deduced by Ferreo in 1515, and first published by Cardan in 1545.
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One of the roots of the cubic in y therefore is

/i = (rc+/FF?'),+H-*/^,+ "*)*.

and this is the well-known formula of Cardan.

The algebraic solution of the cubic equation (i) hence con-

sists in finding B and C by (2) in terms of the given coefficients,

and then by (3) the elements s
x
and sa are determined. Finally,

*, = *+ (*, + *.),

*,= * ft*. + s
>) + iV'^is, - sj, (4)

*,= *- i(s, + s,)
- i^/~^r3 (Sl

-
sj,

which are the algebraic expressions of the three roots.

When B9+ C* is negative the numerical solution of the

cubic is not possible by these formulas, as then both s
k
and ja

are in irreducible imaginary form. This, as is well known, is

the case of three real roots, s
x + s^ being a real, while s

1
s
7

is

a pure imaginary.* When B* -f- C* is o the elements s
x
and s^

are equal, and there are two equal roots, xt
= x

3
= a -f- **,

while the other root is xx
= a 2O.

When B%

-f- C
2
is positive the equation has one real and

two imaginary roots, and formulas (2), (3), and (4) furnish the

numerical values of the roots of (1). For example, take the

cubic
x%

4.5^ + \2x 5
= o,

whence by comparison with (1) are found a = 1.5, b = + 4

c 2.5. Then from (2) are computed B = 1.75, c^+3.125.
These values inserted in (3) give s

1
= +0.9142, ^2

= 1.9142 ;

thus s
t 4- st = 1.0 and ^ ^

2
= + 2.8284. Finally, from (4)

x
x
= 1.5

- 1.0 = +0.5,

x, = 1.5 +0.5 + 1.4142 V^~3 = 2 + 2.4495/,

^
3
= 1.5 + 0.5 1.4142 4/:=~3 = 2 2.4495/,

which are the three roots of the given cubic.

* The numerical solution of this case is possible whenever the angle whose

cosine is C/ 4/ Bz can be geometrically trisected.
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Prob. 12. Compute the roots of x* 2x 5= o. Also the roots
of x 3

-f- o.6^
2

5.76.x + 4.32 = o.

Prob. 13. A cone has its altitude 6 inches and the diameter of

its base 5 inches. It is placed with vertex downwards and one fifth

of its volume is filled with water. If a sphere 4 inches in diameter
be then put into the cone, what part of its radius is immersed in the
water ? (Ans. 0.5459 inches).

Art. 10. The Quartic Equation.

The quartic equation was first solved in 1545 by Ferrari,

who separated it into the difference of two squares. Descartes

in 1637 resolved it into the product of two quadratic factors.

Tschirnhausen in 1683 removed the second and fourth terms.

Euler in 1732 and Lagrange in 1767 effected solutions by

assuming the form of the roots. All these methods lead to

cubic resolvents, the roots of which are first to be found in

order to determine those of the quartic.

The methods of Euler and Lagrange, which are closely

similar, first reduce the quartic to one lacking the second term,

y + 6B/ + 4Cj> + D = o;

and the general form of the roots being taken as

y x
= + Vsx + V7t + V73 , y%

= - Vs. + VJ,
- Vi3 ,

y, = + V7
X

-
VI,

- V73 , yA
= -V7

x

- v72 + Vs.,

the values slt
s9,

st ,
are shown to be the roots of the resolvent,

s
3 + $Bs* + i(9^

2 -
)*
~

iC* = o.

Thus the roots of the quartic are algebraically expressed in f

terms of the coefficients of the quartic, since the resolvent is

solvable by the process of Art. 9.

Whatever method of solution be followed, the following

final formulas, deduced by the author in 1892, will result.*

Let the complete quartic equation be written in the form

x" + 4ax> + 6bx* +4cx + d=o. (1)

* See American Journal Mathematics, 1892, Vol. XIV, pp. 237-245.
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First, let g, k, and k be determined from

g=a*-b, h=bs+ c'
i -2abc + dg, k = %ac-V-\d. (2)

Secondly, let / be obtained by

/ = \{li + VW+T>)
h + \{h - VF+J*)* (3)

Thirdly, let u, v, and w be found from

u=g+/, v = 2g-J, w = 4u* + $k \2gL (4)

Then the four roots of the quartic equation are

x
x
= a + Vu + ^v + Vw,

*

#a
= a + Vu *v + Vw,

xs
= a Vu -\- Vy Vw,

x
A
= a Vu Vv Vw,

(5)

in which the signs are to be used as written provided that

2a3

lab + c is a negative number; but if this is positive all

radicals except Vw are to be reversed in sign.

These formulas not only serve for the complete theoretic

discussion of the quartic (1), but they enable numerical solu-

tions to be made whenever (3) can be computed, that is, when-

ever A* -\-k* is positive. For this case the quartic has two real

and two imaginary roots. If there be either four real roots or

four imaginary roots J? -f- k
%

is negative, and the irreducible

case arises where convenient numerical values cannot be ob-

tained, although they are correctly represented by the formulas.

As an example let a given rectangle have the sides / and q,

and let it be required to find the length of an inscribed rec-

tangle whose width is m. If x be this length, this is a root of

the quartic equation

x* _ (# _|_ tf _|_ 2mi

)x
i + ^pqmx (/+ tf n?).* = o,

and thus the problem is numerically solvable by the above

formulas if two roots are real and two imaginary. As a special

case let p = 4 feet, q = 3 feet, and m == 1 foot
;
then

x* 2jx'
i

-f- 48^ 24 = o.

4-1.
*" * 4 On**

1'* "M
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By comparison with (i) are found a = o, b 4 1
-, c = + 12,

and ^=24. Then from (2), g = + 41., ^ = 4 an(j

^ = + -V- Thus ^* -j-
3
is positive, and from (3) the value of /

is 3.6067. From (4) are now found, u= +0.8933, v= 12.6067,
and w = + 161.20. Then, since c is positive, the values of the

four roots are, by (5),

x
x
= 0.945 1/12.607 + 12.697 = 5.975 feet,

x
2
= 0.945 + V'12.607+ 12.697 = + 4.085 feet,

x9
= - 0.945 + V12.607 - 12.697 = + 0.945 + 0.30/,

x
A
= 0.945 V 1 2.607 12.697 = + 0.945 0.30/,

the second of which is evidently the required length. Each of

these roots closely satisfies the given equation, the slight dis-

crepancy in each case being due to the rounding off at the third

decimal.*

Prob. 14. Compute the roots of the equation x
A + 'jx + 6 = o.

{Ans. 1.388, 1.000, 1. 194 1. 701/.)

Art. 11. Quintic Equations.

The complete equation of the fifth degree is not algebraic-

ally solvable, nor is it reducible to a solvable form. Let the

equation be

x* + $ax* + $bx*+ $cx* + $dx + 2e o,

and by substituting y a for x let it be reduced to

/+ S#/+SCf+SDj>+ 2E = o.

The five roots of this are, according to Art. 8,

y, = *, + $* + s
* + so

y, = &i + \+ e\ + \f

y* = 6**i + e% + es
3 + e\,

y* = eV, + es2 + eV3 + e's
t,

y> = e% + e%+ *
s

* + S*>

in which e, e', e
3

. e* are the imaginary fifth roots of unity. Now
if the several products of these roots be taken there will be

* This example is known by civil engineers as the problem of finding the

length of a strut in a panel of the Howe truss.
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found, by (4) of Art. 6, four equations connecting the four ele-

ments s
lf

s s
3 ,
and s<, namely,

B = s,s4 + Va>
C s*s

3 + sfr + s
t\ + s<\,

D = V'd + V*i + V*i + *A - *iV - *i** + ^W.

-
50,V< + *,V. + ^V4 + ^Vt) >

but the solution of these leads to an equation of the 120th

degree for s, or of the 24th degree for s\ However, by taking

s
1
s
i s^s3

or s* -\- s
3

b

-f- s
3

* + -C as the unknown quantity, a

resolvent of the 6th degree is obtained, and all efforts to find

a resolvent of the fourth degree have proved unavailing.

Another line of attack upon the quintic is in attempting to

remove all the terms intermediate between the first and the

last. By substituting y* +py -\-q for x
y
the values of p and q

may be determined so as to remove the second and third terms.

by a quadratic equation, or the second and third by a cubic

equation, or the second and fourth by a quartic equation, as

was first shown by Tschirnhausen in 1683. By substituting

y* -{-py* -f- qy -f- r for x, three terms may be removed, as was

shown by Bring in 1786. By substituting y*-\~Py
a

-\- qy
2

-\-ry-\-f

for x it was thought by Jerrard in 1833 tnat f ur terms might
be removed, but Hamilton showed later that this leads to

equations of a degree higher than the fourth.

In 1826 Abel gave a demonstration that the algebraic solu-

tion of the general quintic is impossible, and later Galois

published a more extended investigation leading to the same

conclusion.* The reason for the algebraic solvability of the

quartic equation may be briefly stated as the fact that there

exist rational three-valued functions of four quantities. There

are, however, no rational four-valued functions of five quan-

tities, and accordingly a quartic resolvent cannot be found for

the general quintic equation.

*
Jordan's Traite des substitutions et des equations algebriques; Paris, 1870.

Abhandlungen iiber die algebraische Auflosung der Gleichungen von N. H*
Abel und Galois; Berlin, 1889.
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There are, however, numerous special forms of the quintic
whose algebraic solution is possible. The oldest of these is the

quintic of De Moivre,

f + SB/ + $&y + 2E = o,

which is solved at once by making s,
= s

9
= o in the element

equations ;
then - =: s

x
s
4 and - 2 =

s," + s,\ from which
s

x
and s

A
are found, and y x

= s
t -\- s

t ,
or

y1 =(-+ V&+ &)* + (- E - VW+&)\
while the other roots are j2

= es
% + e\ , y3

= eV, + e
3
^
4 ,

yt
= e\ + eV

4 ,
and j6

= e's
1 + e^

4
. If B b + ^ 2

be negative,

this quintic has five real roots; if positive, there are one real

and four imaginary roots.

When any relation, other than those expressed by the four

element equations, exists between s
t , st , st , s4 ,

the quintic is

solvable algebraically. As an infinite number of such relations

may be stated, it follows that there are an infinite number of

solvable quintics. In each case of this kind, however, the co-

efficients of the quintic are also related to each other by a

certain equation of condition.

The complete solution of the quintic in terms of one of the

roots of its resolvent sextic was made by McClintock in 1884.*

By this method ^
x

6

,
s2\ s

3\ and ^
4

6
are expressed as the roots of

a quartic in terms of a quantity / which is the root of a sextic

whose coefficients are rational functions of those of the given

quintic. Although this has great theoretic interest, it is, of

course, of little practical value for the determination of numer-

ical values of the roots.

By means of elliptic functions the complete quintic can,

however, be solved, as was first -shown by Hermite in 1858.

For this purpose the quintic is reduced by Jerrard's transfor-

mation to the form x b + $dx-\-2e = o, and to this form can

also be reduced the elliptic modular equation of the sixth

degree. Other solutions by elliptic functions were made by

* American Journal of Mathematics, 1886, Vol. VIII, pp. 49-83-
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Kronecker in 1861 and by Klein in 1884.* These methods,

though feasible by the help of tables, have not yet been sys-

tematized so as to be of practical advantage in the numerical

computation of roots.

Prob. 15. If the relation ^4 = Vt exists between the elements

show that sf+ s%
* + s3

b + s4
b = - 2E.

Prob. 16. Compute the roots of y
h + ioy

3 + 2qy + 6 = o, and

also those ofy
b

ioy
3

-f- 2oy + 6 = o.

Art. 12. Trigonometric Solutions.

When a cubic equation has three real roots the most con-

venient practical method of solution is by the use of a table of

sines and cosines. If the cubic be stated in the form (1) of

Art. 9, let the second term be removed, giving

f + $By +2C= o.

Now supposey=2r sin 0, then this equation becomes

/? C
8 sin

3

0-)-6-8 sin 0+2-i = o,

and by comparison with the known trigonometric formula

8 sin' 6 6 sin 6 -\- 2 sin 30 = o,

there are found for r and sin 30 the values

r = V By sin 30 = C/ V B\

in which B is always negative for the case of three real roots

(Art. 9). Now sin 3$ being computed, 3# is found from a table

of sines, and then 6 is known. Thus,

yi
= 2r sin 6, y2

= 2r sin (120 + 6), y%
= 2r sin (240 + 0),

are the real roots of the cubic in y.\

* For an outline of these transcendental methods, see Hagen's Synopsis der

hoheren Mathematik, Vol. I, pp. 339-344.

f When B3 is negative and numerically less than C'2 ,
as also when Bz

is

positive, this solution fails, as then one root is real and two are imaginary. In

this case, however, a similar method of solution by means of hyperbolic sines

is possible. See Grunert's Archiv fur Mathematik und Physik, Vol. xxxviii,

pp. 48-76.

fV 1

- \ -
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For example, the depth of flotation of a sphere whose diam-
eter is 2 feet and specific gravity 0.65, is given by the cubic

equation x* - 3*
2 + 2.6 = o (Art. 6). Placing x = y + 1 this

reduces to/ 37 + 0.6 = 0, for which B = i and C =+0.3.
Thus r = 1 and sin 30 = + 0.3. Next from a table of sines,

30 = 17 27', and accordingly 0=5 49'. Then

yx
= 2 sin 5 49/ = -f 0.2027,

y2
= 2 sin 125 49' = + 1.6218,

J, = 2 sin 245 49' = 1.8245.

Adding 1 to each of these, the values of x are

x
x
=+ 1.203 feet, *

a
= + 2.622 feet, x

a
= -0.825 feet

;

and evidently, from the physical aspect of the question, the

first of these is the required depth. It may be noted that the

number 0.3 is also the sine of 162 u', but by using this the

three roots have the same values in a different order.

When the quartic equation has four real roots its cubic re-

solvent has also three real roots. In this case the formulas of

Art. 10 will furnish the solution if the three values of / be ob-

tained from (3) by the help of a table of sines. The quartic

being given, g, h, and k are found as before, and the value of

k will always be negative for four real roots. Then

r = V k, sin 30 = h/r\

and 30 is taken from a table ;
thus is known, and the three

values of / are

/
x
= r sin 0, /

f
= r sin(i2o + 0), /

s
= r sin (240 + 0).

Next the three values of u, of v, and of w are computed, and

those selected which give u, w, and v Vw all positive quanti-

ties. Then (5) gives the required roots of the quartic.

As an example, take the case of the inscribed rectangle in

Art. 10, and let/ = 4 feet, q = 3 feet, m = Vi$ feet; then the

quartic equation is

jri_5ijr
>+ 48 VT$x 156= 0.



26 THE SOLUTION OF EQUATIONS. [CHAP. I.

Here a = o, b = 8J-, = + 12 ^13, and d = 156. Next
" =+ 8, ^= *f*, and / =

-jL- The trigonometric work
now begins; the value of r is found to be + 4f, and that of

sin 3$ to be + 0.7476; hence from the table 3$ = 4823
/

,
and

$ = i607
/

40
//

. The three values of / are then computed

by logarithmic tables, and found to be,

/,
= + 1.250, /,

= + 3.1187, /
4
=- 4.3687.

Next the values of ?/, v, and w are obtained, and it is seen that

only those corresponding to l
x
will render all quantities under

the radicals positive ;
these quantities are u = 9.75, v = 1 5-75>

and w = 192.0. Then the four roots of the quartic are

*,= 8.564, x, =+ 2.319, *,=+ 1.746, x
K
=+ 4.499 feet,

of which only the second and third belong to inscribed rec-

tangles, while the first and fourth belong to rectangles whose

corners are on the sides of the given rectangle produced.

Trigonometric solutions of the quintic equation are not

possible except for the binomial xb

a, and the quintic of

De Moivre. The general trigonometric expression for the root

vof a quintic lacking its second term isy=2r1 cos^,+2r2 cos at

and to render a solution possible, r
x
and r2 ,

as well as cos d
x

and cos#2 ,
must be found; but these in general are roots of

equations of the sixth or twelfth degree : in fact r,
3

is the same

as the function s
x
s

t
of Art. II, and r* is the same as s^s3 .

Here cos#, and cos#2 may be either circular or hyperbolic

cosines, depending upon the signs and values of the coefficients

of the quintic.

Trigonometric solutions are possible for any binomial equa-

tion, and also for any equation which expresses the division of

an angle into equal parts. Thus the roots of x6 + 1 =0 are

cos^ 30 i sin m 30 ,
in which m has the values 1, 2, and 3.

The roots of x 6

$x*-\-$x 2 cos 5 6 = o are 2 cos (m 72+$)
where m has the values o, 1, 2, 3, and 4.

Prob. 17. Compute by a trigonometric solution the four roots of

the quartic x
A + 4#

3

24^ 76^ 29 = 0. (Ans. 6.734, 1.550,

+ 0.262, + 4.022).
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Prob. 1 8. Give a trigonometric solution of the quintic equation
x 6

$bx
z + 5^x 2e to* the case of five real roots. Compute

the roots when b \ and e= 0.752798. (Ans. 1.7940, 1.3952*

0.2864, o-WI, i-97 10-)

Art. 13. Real Roots by Series.

The value of x in any algebraic equation may be expressed
as an infinite series. Let the equation be of any degree, and

by dividing by the coefficient of the term containing the first

power of x let it be placed in the form

a = x+ bx% + cx z+ dx' -f ex*+fx*+ . . .

Now let it be assumed that x can be expressed by the series

x = a + mc? + naz

-\-pa
K

-\- qc?+ . . .

By inserting this value of x in the equation and equating the

coefficients of like powers of #, the values of m, n, etc., are

found, and then

x=a - ba' + (2b'
i

-c)a
a

-(sb
3

-sbc+d)a
i

-{-(i4b
i-2ib'c+ 6b^+y'

i

-e)^

-(42^- 84 V+28V+28^2 -
>jbe- 7cd+ f)a

6

+. . .,

is an expression of one of the roots of the equation. In order

that this series may converge rapidly it is necessary that a

should be a small fraction.*

To apply this to a cubic equation the coefficients d, e,ff etc>

are made equal to o, For example, let x%

3*+ 0.6 = o ;

this reduced to the given form is 0.2 = x \x\ hence a = 0.2^

b o, c = -J,
and then

x = 0.2 + i . 0.2
3+ i . 0.2

8 + etc. = + 0.20277,

which is the value of one of the roots correct to the fourth

decimal place. This equation has three real roots, but the

series gives only one of them ;
the others can, however, be

found if their approximate values are known. Thus, one root

is about +1.6, and by placing x=y+ l.6 there results an

equation in y whose root by the series is found to be+ 0.0218,.

and hence + 1.62 18 is another root of x%

3* + -6 = -

*This method is given by J. B. Mott in The Analyst, 1882, Vol. IX, p. 104.
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Cardan's expression for the root of a cubic equation can be

expressed as a series by developing each of the cube roots by
the binomial formula and adding the results. Let the equa-

tion be y* -J- ^By -\- 2C = o, whose root is, by Art. 9,

y = (_ C+ VJ? + Cy +(-C- VBr+C>)\
then this development gives the series,

^ / 2 2.5.8, 2. 5. 8. 11. 14, \

* v ' \ 2 2.3.4 2.3.4.5.6 /'

in which r represents the quantity (* + O/Sw* If r

the equation has two equal roots and the third root is 2( C)$.

If r is numerically greater than unity the series is divergent,

and the solution fails. If r is numerically less than unity and

sufficiently small to make a quick convergence, the series will

serve for the computation of one real root. For example, take

the equation x% 6x + 6 = o, where B= 2 and C = 3 ;

hence r = 1/8 1, and one root is

y = 2.8845(1 0.01235 0.00051 0.00032) = 2.846,

which is correct to the third decimal. In comparatively few

cases, however, is this series of value for the solution of cubics.

Many other series for the expression of the roots of equa-

tions, particularly for trinomial equations, have been devised.

One of the oldest is that given by Lambert in 1758, whereby
the root of xn + ax b = o is developed in terms of the

ascending powers of b/a. Other solutions were published by
Euler and Lagrange. These series usually give but one root,

and this only when the values of the coefficients are such as to

render convergence rapid.

Prob. 19. Consult Euler's Anleitung zur Algebra (St. Petersburg,

1771), pp. 143-150, and apply his method of series to the solution of

a quartic equation.

Art. 14. Computation of all Roots.

A comprehensive and valuable method for the solution of

equations by series was developed by McClintock, in 1894, by
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means of his Calculus of Enlargement.* By this method all

the roots, whether real or imaginary, may be computed from a

single series, The following is a statement of the method as

applied to trinomial equations :

Let xn = nAxn~ k + Bn be the given trinomial equation.

Substitute x = By and thus reduce the equation to the form

y
n = nay

n'k+ i where a = A/B
k
. Then if Bn

is positive, the

roots are given by the series

y = co -{-co
1-* a + oo

l-2k
(i 2k-\- n)c?/2 \

-\-oo
l

-^{\ 4k-\-n)(i 4k-\-2n)(\ 4^+3^/4 !+...,

in which 0,1 represents in succession each of the roots of unity.

If, however, Bn
is negative, the given equation reduces to

y
M = nay

n~k
1, and the same series gives the roots if co be

taken in succession as each of the roots of I.

In order that this series may be convergent the value of an

must be numerically less than k~\n k)
k~H

; thus for the quar-

tic y* = 4ax + 1, where n = 4 and k = 3, the value of a must

be less than 27-*.

To apply this method to the cubic equation x'=z$AxB\

place n = 3 and k = 2, and put y = Bx. It then becomes

/ = lay I where a = A/B\ and the series is

y = co + Go*a $Goa* + iafa* -(-

in which the values to be taken for co are the cube roots of 1

or 1, as the case may be. For example, let x3 2x 5 =0.

Placingy= $*x, this reduces toy
3

=0.684y+i. Here #=0.228,

and as this is less than 4-* the series is convergent. Making

co = i, the first root is

y sss I -J- 0.2280 O.OO39 + O.OOO9 = I.2250.

See Bulletin of American Mathematical Society, 1894, Vol. I, p. 3; also

American Journal of Mathematics, 1895, Vol. XVII, pp. 89-110.
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Next making go = + i V 3, go
9
is J J V 3,

and the corresponding root is found to be

y = -
0.6125 + O.3836 V^.

Again, making go = \ \ V 3 the third root is found to

be the conjugate imaginary of the second. Lastly, multiplying

each value of y by 5*,

x 2.095, x = -
1.047 I-I36 V^,

which are very nearly the roots of x* 2x 5 = o.

In a similar manner the cubic x3

-\- 2^ + 5 =0 reduces to

y
3 = 0.684J/ 1, for which the series is convergent. Here

the three values of go are, in succession, I, J +4 '~
3

i + i \
f

3> anc* the three roots are y = 0.777 and

y = 0.388 1. 1 37*'.

When all the roots are real, the method as above stated

fails because the series is divergent. The given equation can,

however, be transformed so as to obtain n k roots by one

application of the general series and k roots by another. As
an example, let x* 243^ -f- 330 = o. For the first applica-

tion this is to be written in the form

x=z S_ 330

243 243'

for which n = 1 and k = 2. To make the last term unity

place x ss -v, and the equation becomes

whence a = 330
8

/3.243'. These values of
, k, and a are now

inserted in the above general value of y, and go made unity;

thus ^=0.9983, whence x
x =1.368 is one of the roots. For

the second application the equation is to be written

*> = _33V, + 243>
243 T *"
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for which n = 2 and k = 3. Placing x 243*7, tms becomes

whence # = 110/243', and the series is convergent. These

values of n, k, and a are now inserted in the formula for y,

and go is made + 1 and 1 in succession, thus giving two

values for y, from which x^ = 14.86 and x
s
= 16.22 are the

other roots of the given cubic.

McClintock has also given a similar and more general

method applicable to other algebraic equations than trinomials.

The equation is reduced to the form y
n = na . (J>y 1, where

na . <py denotes all the terms except the first and the last.

Then the values of y are expressed by the series

^=(+ (wI-"0^.^+^I~M

^^
I~w

(0^)
a

.-j
+

+{^-
n

^^-
n

^-i\+
in which the values of go are to be taken as before. The

method is one of great importance in the theory of equations,

as it enables not only the number of real and imaginary roots

to be determined, but also gives their values when the conver-

gence of the series is secured.

Prob. 20. Compute by the above method all the roots of the

quartic x* + * + 10 = 0.

Art. 15. Conclusion.

While this Chapter forms a supplement to the theory of

equations as commonly given in college text-books, yet the

brief space allotted to it has prevented the discussion and de-

velopment of many interesting branches. Chief among these

is the topic of complex or imaginary roots, particularly of

their graphical representation and their numerical computation.

Although such roots rarely, if ever, are required in the solution

of problems in physical science, their determination is a matter

of much theoretic interest. It may be mentioned, however,
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that both the regula falsi and Newton's approximation rule

may, by a slight modification, be adapted to the computation
of these imaginary roots, approximate values of them being
first obtained by trial.

A method of solution of numerical algebraic equations,

which may be called a logarithmic process, was published by
Graffe in 1837, and exemplified by Encke in 1841.* It consists

in deriving from the given equation another equation whose

roots are high powers of those of the given one, the coefficients

of the latter then easily furnishing the real roots and the

moduluses of the imaginary roots. The method, although

little known, is without doubt one of high practical value, as

logarithmic tables are used throughout; moreover, Encke states

that the time required to completely solve an equation of

the seventh degree with six imaginary roots, as accurately as

can be done with seven-place tables, is less than three hours.

The algebraic solutions of the quadratic, cubic, and quartic

equations are valid not only for real coefficients, but also for

imaginary ones. In the latter case the imaginary roots do not

necessarily occur in pairs. The method of McClintock has the

great merit that it is applicable also to equations with imagi-

nary coefficients; it constitutes indeed the only general method

by which the roots in such cases can be computed.

Prob. 21. Compute by McClintock's series the roots of the equa-
tion x 3

ix 1 = o.

Prob. 22. Solve the equation cos x cosh.* -j-i
=

o, and also the

equation x e* = o. (For answers see Crelle's Journal fur Mathe-

matik, 1841, Vol. XXII, pp. 1-62.)

*See Crelle's Journal fur Mathematik, 1841, pp. 193-2480
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Chapter II.

DETERMINANTS.

By Laenas Gifford Weld,
Professor of Mathematics in the State University of Iowa.

Art. 1. Introduction.

As early as 1693 Leibnitz arrived at some vague notions

regarding the functions which we now know as determinants.

His researches in this subject, the first account of which is

contained in his correspondence with De L'Hospital, resulted

simply in the statement of some rather clumsy rules for elimi-

nating the unknowns from systems of linear equations, and

exerted no influence whatever upon subsequent investigations

in the same direction. It was over half a century later, in

1750, that Gabriel Cramer first formulated an intelligible and

general definition of the functions, based upon the recognition

of the two classes of permutations, as presently to be set forth.

Though Cramer failed to recognize, even to the same extent

as Leibnitz, the importance of the functions thus defined, the

development of the subject from this time on has been almost

continuous and often rapid. The name " determinant" is due

to Gauss, who, with Vandermonde, Lagrange, Cauchy, Jacobi,

and others, ranks among the great pioneers in this development.

Within recent years the theory of determinants has come

into very general use, and has, in the hands of such mathema-

ticians as Cayley and Sylvester, led to results of the greatest

interest and importance, both through the study of special

forms of the functions themselves and through their applica-

tions.*

* A list of writings on Determinants is given by Muir in Quarterly Journal

of Mathematics, 1881. Vol. XVIII, pp. 110-149.
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Art. 2. Permutations.

The various orders in which the elements of a group may
be arranged in a row are called their permutations.

Any two elements, as a and b, may be arranged in two

orders : ab and ba. A third, as c, may be introduced into each

of these two permutations in three ways : before either element,

or after both
;
thus giving 3X2 = 6 permutations of the three

elements. In like manner an additional element may be intro-

duced into each of the permutations of i elements in (i -\- 1)

ways : before any one of them, or after all. Hence, in

general, if Pt denote the number of permutations of i ele-

ments, Pi+l
= (r+ 1)/^ Now, P

%
= 3x2x1=3!; hence

jP
4
= 4 X 31=4!; and, n being any integer,

Pn = n{n i)(n 2) . . . 1 = n ! .

That is, the number of permutations of n elements is n !.

For all integral values of n greater than unity, n ! is an

even number.

If the elements of any group be represented by the differ-

ent letters, a, b, c, . . ., the alphabetical order will be considered

as the natural order of the elements. If represented by the

same letter with different indices, thus :

att
a a

3 ,
. . .

;
or thus : a', a", a'"

,
. . .,

the natural order of the elements is that in which the indices

form a continually increasing series.

Any two elements, whether adjacent or not, standing in

their natural order in a permutation constitute a permanence ;

standing in an order which is the reverse of the natural, an

inversion. Thus, in the permutation daecb, the permanences

are de, ae, ab, ac ; the inversions, da, dc, db, ec, eb, cb.

The permutations of the elements of a group are divided

into two classes, viz.: even or positive permutations, in which

the number of inversions is even ; and odd or negative permu-

tations, in which the number of inversions is odd.
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When the elements are arranged in the natural order the

number of inversions is zero an even number.

Thus, the even or positive permutations of the elements

#,, a a%
are

a
t

<z
2
a

3f #
a
a

3 alf a
3 a, #

a ;

while the odd or negative permutations are

a
3
a

t alt a, a
3
a a

2
a

x
a

%
.

Art. 3. Interchange of Two Elements.

It will now be shown that if, in any permutation of the

elements of a group, two of the elements be interchanged the

class of the permutation will be changed.

Let q and s be the elements in question. Then, represent-

ing collectively all the elements which precede these two by

P%
those which fall between them by R, and those which follow

by T
y any permutation of the group may be written

PqRsT.

Of the elements R y supposed to be r in number, let represent

h the number of an order higher than q,

i
" " " " " lower "

q,

j
" " " " " lower "

s,

k " " " " "
higher

"
s.

It is evident that no change in the order of the elements qRs

can affect their relations to the elements of either P or T.

Then, passing from the order PqRsT to the order

PRqsT

changes the number of inversions by {h i) ;
and passing from

this to the order

PsRqT

again changes the number of inversions by (J k) I, the

j minus (
Sign bdng USCd aS q ^ f

{ Ser (

0rder than S'

The total change in the number of inversions due to the inter-

change of the two elements in question is, therefore,
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But since i = r h and k == r j\ this may be written

Ah +J ~ r
) *

which is an odd number for all admissible values of //,/, and r

Hence, the interchange of any two elements in a permutation

changes the number of inversions by an odd number, thus

changing the class of the permutation.

Art. 4. Positive and Negative Permutations.

Of all the permutations of the elements of a group, one

half are even and one half odd.

To prove this, write out all the permutations. Now choose

any two of the elements and interchange them in each permu-
tation. The result will be the same set of permutations as

( even )

before, only differently arranged. But each
j Q^ > permuta-

tion of the old set has been converted into an
j even (

one in

the new. Hence, in either set, there are as many even permu-
tations as odd ;

that is, one half are even and one half odd.

Prob. i. Classify the following permutations:

(i) bcdea
; (2) m vi II iv; (3) knimlj;

(4) a" a* a' a" a'"; (5) fteyZafi;. (6) 52413;
(7) x

x
xt x;x;x%xt \ (8) F.Tu. M. Th. W.; (9) fiKviX.

Prob. 2. Derive the formula for the number of permutations of

n elements taken m at a time. (Ans. n\/\n m)\.)

Prob. 3. How many combinations of m elements arranged in the

natural order may be selected from a group of n elements? (Ans.

n\/tn\(n m)\.)
]

Prob. 4. Show that o! = 1.
(
y\~y\[ ^ .'!:_.

Art. 5. The Determinant Array.

Assume n* elements arranged in n vertical ranks or columns^

and n horizontal ranks or rows, thus : .

a( a," . . . a^

a
'

a " a (M)
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In this array all the elements in the same column have the

same superscript, and those in the same row the same subscript.

The columns being arranged in order from left to right, and

the rows likewise in order from the top row downward, the

position of any element of the array is shown at once by its

indices. Thus, a"' is in the third column and the fifth row

of the above array.

The diagonal passing through the elements a/, a%", . . . an
(M)

is called the principal diagonal of the array ;
that passing

through an\ an . x'\ . . . #,
(M)

,
the secondary diagonal. The posi-

tion occupied by the element a/ is designated as the leading

position.

Art. 6. Determinant as Function of n* Elements.

The array just considered, inclosed between two vertical

bars, thus :

dl a;' . . . a^
ai aj

f

. . . a^

a' a" a {n)

is used in analysis to represent a certain function of its n* ele-

ments called their determinant .* This function may be defined

as follows :

Write down the product of the elements on the principal

diagonal, taking them in the natural order; thus :

This product is called the principal term of the determinant.

Now permute the subscripts in this principal term in every

possible way, leaving the superscripts undisturbed. To such of

the n\ resulting terms as involve the even permutations of the

subscripts give the positive sign ;
to those involving the odd

This notation was first employed by Cauchy in 1815. See Dostor's

Theorie des determinants, Paris, 1877.



38 DETERMINANTS. [Chap. II.

permutations, the negative sign. The algebraic sum of all the

terms thus formed is the determinant represented by the?

given array.

Art. 7. Examples of Determinants.

Applying the process above explained to the array of four

elements gives

a, a. a:am a
% ax

As an example of a determinant of nine elements, with its ex-

pansion, may be written

~ t ~ ft ~ ttia
l
a

x
a

x
a

x
a

2
a

s -f- <z a a %
a

x + a
%
a

x a^

- a^a^al" - a
x'a,"a9

'" - a^a^a;". (2}

It is evident, from the mode of its formation, that each term

of the expansion of a determinant contains one, and only one,,

element from each column and each row of the array.

It follows that every complete determinant is a homoge-
neous function of its elements. The degree of this function,

with respect to its elements, is called the order of the deter-

minant. Thus, (1) and (2) are of the second and third order

respectively.

The definition of a determinant given in the preceding^

article is once more illustrated by the following example of a

determinant of the fourth order with its complete development :

a
x
b

x
c

x
d

x

a, b, c3 dt

a
%
b

%
c

%
d

%

a, bA
c
t
dA

+ a
xbj%

d
K

a
x
b
%
c
K
d

%
a

xb,c,dt -f a
x
b

t
c
3
d

z

+ axbf/l% afi^d, aJ> x
c
%
d

K + aj>x
c
k
d

%

-f- a
3
b

xc^di afi x
c
%
d

%
a

3
b

x
c
4d^ -\- aj> x

c
z
d

9

+ ajb%
c

x
d

x aJbA
c

x
d

% aJb%
c

x
d

K -\- ajb,1c x
d

%

+ a%bfx
d

%
a

A
b

9
c

x
d

9 aJ>%
c
A
d

x + aJ)K
c
t
d

x

-f- a
%bjK

d
x aj>j%

d
x aJbK

c
%
d

x -f a
A6,ct

d
x

(3)
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It will be noticed that, in this case, the columns are ranked

alphabetically instead of by the numerical values of a series of

indices.

Art. 8. Notations.

Besides the notations already employed, the following is

very extensively used :

U 0,8 ' ' 01.

0*1 2 0*

0, am . . . a

This is called the double-subscript notation
; the first subscript

indicating the rank of the row, the second that of the column.

Thus the element # is in the second row and the third column.

The letters are sometimes omitted, the elements being thus

represented by the double subscripts alone.*

Instead of writing out the array in full, it is customary,

when the elements are merely symbolic, to write only the prin-

cipal term and enclose it between vertical bars. This is called

the umbral notation. Thus, the determinant of the nth. order

is written

a: an
in)

or, using double subscripts,

| #n 22 >
|

These last two forms are sometimes still further abridged to

|

a
|

and
|

ahH |
,

^oectively.

Prob. 5. Write out the developments of the following determi-

nants:

w

* Leibnitz indicated the elements of a determinant in this same manner,

though he made no use of the array.

a, b
t
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Beneath the square array let the first two rows be repeated in

order, as shown in the figure.

Now write down six terms, each

the product of the three ele-

ments lying along one of the

six oblique lines parallel to the

diagonals of the original square.

Give to those terms whose ele-

ments lie on lines parallel to __,

the principal diagonal the posi-

tive sign; to the others, the *

negative sign. The result is

the required expansion. Ap-

plying the method to the determinant just written gives

I iVs I

= a
xKc

% + aAtv + ajb^ a
s b.2c i aj.c, aj>x

c
% .

After a little practice the repetition of the first two rows will

be dispensed with.

The above methods are especially useful in expanding
determinants whose elements are not marked with indices, or

in evaluating those having numerical elements. No such sim-

ple methods can be given for developing determinants of higher

orders, but it will be shown later that these can always be

resolved into determinants of the third or second order.

-f-

Prob. n. Develop the following determinants:

(i)

(4)

(7)

a h

h b f
g f c

*,.r, i

i cos a
cos a i

w

(s)

(8)

o n m
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Art. 10. Interchange of Rows and Columns.

Any term in the development of the determinant
|

a
x

{H)
j may-

be written

**' a! . a .()

in which hij . . ./is some permutation of the subscripts I, 2, 3,. . .n+

Designate by u the number of inversions in hij . . . /. Also, let

v be the number of interchanges of two elements necessary to

bring the given term into the form

a a (<?) n W (0

in which the subscripts are arranged in the natural order, while

pqr . . . / is a certain permutation of the superscripts ', ", '", . . .
(M)

.

This permutation is even or odd according as v is even or

odd. But u and v are obviously of the same class
;
that is,

both are even or both odd. Hence the permutations hij . . . /

and pqr . . . / are of the same class
;
and the term will have the

same sign, whether the sign be determined by the class of the

permutation of the subscripts when the superscripts stand in

the natural order, or by the class of the permutation of the

superscripts when the order of the subscripts is natural.

It follows that the same development of the determinant

array will be obtained if, instead of proceeding as indicated in

Art. 6, the superscripts of the principal term be permuted, the

subscripts being left in the natural order, and the sign of each

of the resulting terms written in accordance with the class of

the permutations of its superscripts.

Passing from one of these methods of development to the

other amounts to the same thing as changing each column of

the array into a row of the same rank, and vice versa. Hence,

a determinant is not altered by changing the columns into cor-

responding rows and the rows into corresponding columns.

Thus:

a" am

aj an
"

. . . an{n) I I a a^> . . . a,
()
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Whatever theorem, therefore, is demonstrated with reference

to the rows of a determinant is also true with reference to the

columns.

The rows and columns of a determinant array are alike

called lines.

Art. 11. Interchange of Two Parallel Lines.

If any two parallel lines of a determinant be interchanged,
the determinant will be changed only in sign.

For, interchanging any two parallel lines of a determinant

array amounts to the same thing as interchanging, in every
term of the expansion, the indices which correspond to these

lines. Since this changes the class of each permutation of the

indices in question from odd to even or from even to odd, it

changes the sign of each term of the expansion, and therefore

that of the whole determinant.

It follows from the above that if any line of a determinant

be passed over ;// parallel lines to a new position in the array

the new determinant will be equal to the original one multi-

plied by ( i)
m

.

The element ak
{s) may be brought to the leading position

by passing the /th row over the (k i) preceding rows, and

the sth column over the (s i) preceding columns. This

being done the determinant is multiplied by

(_ ,)*- . (_ i)~ = (- l)*+*,

which changes its sign or not according as {k+ s) is odd or

even.

The position occupied by ak
{s) is called a positive position

when (k + s) is even ;
a negative position when {k + s) is odd.

Art. 12. Two Identical Parallel Lines.

A determinant in which any two parallel lines are identical

is equal to zero.

For the interchange of these two parallel lines, while it



44 DETERMINANTS. [Chap. II.

changes the sign of the determinant, will in no way alter its

value. The value then, if finite, can only be zero.

Art. 13. Multiplying by a Factor.

Multiplying each element of a line of a determinant by a

given factor multiplies the determinant by that factor.

Since each term of the development contains one and only

one element from the line in question (Art. 7), then multiply-

ing each element of this line by the given factor multiplies

each term of the development, and therefore the whole deter-

minant, by the same factor.

It follows that, if the elements of any line of a determinant

contain a common factor, this factor may be canceled and written

outside the array as a factor of the whole determinant
;
thus :

*., m a.

#
31 . . m a

2i
. . . a,

am ..mani . . .**

A determinant in which the elements of any line have a

common ratio to the corresponding elements of any parallel

line is equal to zero. For this common ratio may be written

outside the array, which will then have two identical lines. Its

value is therefore zero (Art. 12).

A determinant having a line of zeros is equal to zero.

Art. 14. A Line of Polynomial Elements.

A determinant having a line of elements each of which is

the sum of two or more quantities can be expressed as the

sum of two or more determinants.

Let a
x {b

_ b: + b
>>

,,,) Cx

*. {b- bj + b:> . . .
)

ct

a
3 {Bt-bt

' + b ...) c
3

A (1)

be such a determinant. Then, if

Bi=bi -bi^br.
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any term of the expansion of the determinant A is

ah BiCj . . . = ak hi cs . . . ip ah bl cj . . .

ah b(' cj . . . .
.

. ;
(2)

The terms in the expansion of A are obtained by permuting
the subscripts h, i,j\ ... of ah B{ Cj

. . . . But permuting at

the same time the subscripts of the terms in the second mem-
ber of (2), and giving to each term thus obtained its proper

sign, there results

J= \a 1B^...\ = \aAc3 ...\-\a xb;c% ...\ + \aA'
,
c
i ...\... y

which proves the theorem.

Art. 15. Composition of Parallel Lines.

If each element of a line of a determinant be multiplied by
a given factor and the product added to the corresponding ele-

ment of any parallel line, the value of the determinant will not

be changed ;
thus:

au a a
lt . . . av

#*, #, #, . a>'! "-H2 "M3

*n * On + ***) . . . a
x

;

0*, # 2 (aM%+ mani ) . . . ann I

This will appear upon resolving the second member into

two determinants (Art. 14), one of which will be the given de-

terminant, while the other, upon removal of the given factor,

will vanish because of having two identical lines.

In like manner any number of parallel lines may be com-

bined without changing the value of the determinant, care

being taken not to modify in any way the elements to which

are added multiples of corresponding elements from other

parallel lines. For example, |

a
l>n |

is equivalent to

*n (^11 + ..
- ma* +'") *!* axn

-m(ai? + Xa15) + . . .)
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Art. 16. Binomial Factors.

A determinant which is a rational integral function of a

and of b, such that if b is substituted for a the determinant

vanishes, contains {a ^)asa factor. For example,

Jee a* p* a q a-\-r

9-p-
1 b-q b+ r

p q r

is divisible by {a b).

To prove this, let the expansion of any such determinant

be written in the form

A = m, -j- m x
& + wi-P? + ,

the coefficients m ,
m

iy
tn . . . being independent of a. Now

when b is substituted for a the determinant vanishes. Hence,

o = m% + mjb -\- mj? + . . .

Subtracting this from the precedfng gives

A = mt{a
-

b)+ m,(a*
- F) +...

This being divisible by (a b), the theorem is proven.

Prob. 13. Prove the following without expansion :

(0 o x X

my o y
mnz nz o

(3) b + a a

b c + a b

c c a -\-b

(4) *_t a
a

c + a

(2)
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Prob. 14. Prove that

47

1 x a y b

1 x
1

a y x
b

ix
3

a y^ b
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row of the array (Art. 7). If, therefore, in selecting the ele-

ments for any term, any other element than a/ be taken from

the first column, the one taken from the first row must be zero.

Hence, the only terms which do not vanish are those which

contain the element a/.

Moreover, in the terms of the expansion of (1) which do

not vanish, a/ is multiplied by (n 1) elements chosen one

from each column and each row of

a n a .a

. a ()

(2)

There are {n 1)! such terms, any one of which may be

written ,V/" a^n) tne s,*Sn being determined by the

class of the permutation of the n subscripts 1, t
f j\ . . . I. But

since this is of the same class as the permutation of the (n 1}

subscripts i,j\ .'../,- the sign of any term, a^al'a-" . . . at
(n
\

of the expansion of (1) is the same as the sign of the corre-

sponding term, a"a/" . . ,a}
n)

\
of the expansion of (2). Hence,.

(3)a
x

'

a
7
#

a
a

2 .
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The co-factor thus obtained is represented by the symbol

the sign-factor of which, (- 1)*+*, is intrinsic, i.e., included in

the symbol itself, which is accordingly written as positive.
The co-factors of the various elements of \auanaSi \

are as

follows :

An =
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group. In all of them, then, there are nX{n i)! or ;/! dif-

ferent terms of the determinant, which is the whole number.

Hence,

| a^ |

= aiAi + a^'A," + . . . + aj*Ai*\ (i)

Similarly (Art. io),

|
a

|

== 0VA + **AP + . . . + aPAt (2)

Any determinant may, by means of either (i) or (2), be re-

solved into determinants of an order one lower. Since, in

these formulas A k\ . . . Ain
\
or A^, . . . A^s) are themselves

determinants, they may be resolved into determinants of an

order still one lower in the same manner. By continuing the

process any determinant may ultimately be expressed in terms

of determinants of the third or second order, which may be

easily expanded by methods already given (Art. 9).

For example, let it be required to develop the determinant

A =
I
a

t
b% c

3 4 I

. Applying formula (1), letting k = 1, gives

A = a,

Upon a second application of the same formula this becomes

K c
* 4
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Prob. 19. Develop the following determinants:

to

51

i x 1 y
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Similarly, p and s being different superscripts,

fl,^ + aiA + . . . + *ia.CP = o.

Art. 20. Cauchy's Method of Development.

It is frequently desirable to expand a determinant with

reference to the elements of a given row and column.

Let the determinant be A ~
| a}

n)
|

,
and the given row

and column the ht\\ and pth respectively. Then is A h
(p) the

co-factor of ah(p\ the element at the intersection of the two

given lines. The co-factor of any element a s) of A p) will be

designated by Bk
{s

\ this being a determinant of the order

(n 2). The required expansion may now be obtained by
means of the following formula, due to Cauchy :

| mf* |

= mJ*AP- 2aPaiBP. (i)

in which k = I, 2, . . . h I, h -f- I, . . . n, and ^ = I, 2, .. ./ i,

p -\- I, .. . n, successively. .

To prove this, consider that Bk
{s) is the aggregate of all

terms of the expansion of A which contain the product

a p)ak
{s)

. These terms are included in . ah
{p)A^ . Now, every

term in the expansion which does not contain ah
{f>) must contain

some other element ah{s) from the /ith. row and also some other

element a p) from the pth column, and thus contains the prod-

uct ali
s)

aip)
. But this product differs from ah

{p)ak
{s)

only in the

order of the superscripts ;
and is, therefore, in the expansion of

A, multiplied by an aggregate of terms differing in sign only

from that multiplying ah
ip)ak

(s)
. Hence, Bk

i$) is the coefficient

of ah
(s) ak

{p) in the required expansion.

In the formula ah
{p)Ah

[p)

gives (n i) ! terms of A. There

are also {n i)* such aggregates as ah
{s)ak

(p)Bk
{s)

, each con-

taining (n 2) \ terms. The formula therefore gives

(n i) I -\- (n i)
a

{n 2) ! = n ! terms, which is the complete

expansion.

When the expansion is required with reference to the ele-
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ments of the first column and the first row the formula, written

explicitly, becomes

\a W| = a/A/- afa/'B," - a^ax

tf,B
%

m - ... - */*,,
- a;a;'B:' - a;<x;"B:" - ... - a

3'a^B^

- an'ax
"BH

"- aJa^'BJ"- ... - a;ay>B*\ (2)

in which Bk
(s) has intrinsically the sign ( i)*

+s
.

Cauchy's formula is particularly useful in expanding deter-

minants which have been bordered ; such as

-Q
u

i
a

\\
a

\i a \%

U%
a

%x
a a

it

u
%
a

3l
a

3 ,
aS3

(3)

Applying formula (2) to this determinant gives

-Q = " ^22 ^23
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Prob. 25. Show that Cauchy's formula may be written

J==la.w ah
W 6A

daW Sa^a^
d*J

da^da^

Art. 22. Raising the Order.

Since, in the expansion of the determinant (1) of Art. 17

the elements a
t

'

t
. . . aj do not appear, these may be replaced

by any quantities whatever, as Q, . . . T, without changing the

value of the determinant ;
thus :

a/ o o

a% a, a,

o
, ()

au'aj'aj"...a

a/ o o . . . o

Ta" a" r ...a

Similarly,

*,'*,"*.'" ...*,<>

a' a" a'" a (M)un un un . . . un

() a
x
O O . . . O

G*," o ... o

R La
%'"...a

TNan
" f

...a

in which Q, R, . . . T and Z, . . . N are any quantities whatever.

Finally,

a' a" a (M-I) ou n-i <* h-i uri-i u

^aJ'...aH?r
)
<*i

n)
-

a,
' o . . . o o

Qat
"...o o

T N...C a^
that is, if all the elements on one side of the principal diagonal

are zeros the determinant is equal to its principal term, and

the elements on the other side of this diagonal may be replaced

by any quantities whatever.

By what precedes,

a
x

. . . a
t

in,

an . . . an
()

1 o . . . o

Ta'..a, ()
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Hence, a determinant of the nth order may be expressed

as a determinant of the order (n -\- i) by bordering it above

by a row (to the left by a column) of zeros, to the left by a

column (above by a row) of elements chosen arbitrarily, and

writing I at the intersection of the lines thus added. By con-

tinuing this process any determinant may be expressed as a

determinant of any higher order.

Prob. 26. If all the elements on one side of the secondary diag-
onal are zeros, what is the value of the determinant ?

Prob. 27. Develop the determinant a h g u o

h b f v o

g f c w o

U V w o t

o o o t s

Prob. 28. A determinant in which ak
{s) = as

{k) and au{k) = o is

said to be skew-symmetric. Prove that every skew-symmetric deter-

minant of odd order is equal to zero.

r

Art. 23. Solution of Linear Equations.

Of the many analytical processes giving rise to determinants

the simplest and most common is the solution of systems of

simultaneous linear equations. Thus, solving the equations

a;x> + a;>x" = kJ
by the methods of ordinary algebra gives :

a;a," - a^r
"

*/*," - *
tV



Art. 23.] SOLUTION OF LINEAR EQUATIONS. 57

numerator of the fraction giving the value of x' is formed from

this denominator by replacing each coefficient of x' by the

corresponding absolute term. Similarly for x" .

The difficulty of solving systems of linear equations by the

ordinary processes of elimination increases rapidly as the num-

ber of equations is increased. The law of formation of the

roots explained above is. however, capable of generalization,

being equally applicable to all complete linear systems, as will

now be shown.

Let such a system be written

a>x f

-f a,"x" + . . . 4- *w*w = *, ,

<*? + <'x
" + - + <n)x{n) = "> >

an'x' + aj'x" + . . . + a^x() *-() = Kn .

J

(I)

Now form the determinant of the coefficients of these

equations ;
thus :

D = a
x
a

x

. a

()

()

an a,
M

and let A^ be the co-factor of a,}
s) in this determinant. The

function

a i A u+ a w AJ + . . . + a,}* A n
^

is equal to D when/ = s (Art. 18) ;
to zero when p and s are

different superscripts (Art. 19). Then, multiplying the given

equations by Af\ Af\ . . . A ]

respectively, the sum of the

resulting equations is a linear equation in which the coefficient

of x is equal to Z>, while those of all the other unknowns

vanish. The sum is, therefore,

jR* = K
MAf* + *AW + + K A S)

' (
2)

But the second member of this equation is what D becomes

upon replacing the coefficients a* a?\ .-.:.# of the unknown

& by the absolute terms k k9 , . , ** in order. Hence,
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obviously depend upon some relation among the coefficients.

This relation will now be investigated for the case of [n + i)
linear equations involving n unknowns. Let the equations be

+ ... + <*) -v() -_
K.

*v + ... + * =/cK ,
r

If the above equations are consistent the values of the unknowns
obtained by solving any n of them must satisfy the remaining

equation. Solving the first n equations by the method of the

preceding article, substituting the values of x', x" y
. . . xP* thus

obtained in the last equation, and clearing of fractions, the

result reduces to (Art. 18)

E~ a/ ()

an

an+i . a

(*)

+i ^+i

= o,

which is the condition to be fulfilled by the coefficients in order

that the given equations may be consistent.

Hence the condition of consistency for a set of linear equa-

tions involving a number of unknowns one less than the number

of equations is that the determinant of the coefficients and

absolute terms, written in the same order as in the given equa-

tions, shall be zero. This determinant is called the resultant*

or eliminant of the equations. Thus the equations

x-\-y z = o, x y-{-z = 2, x-{-y-{-z = 4, x-\-y-\-z = 6

are consistent, for the reason that

o.I
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Art. 25. The Matrix.

Assume r linear equations involving n unknowns, r being

greater than n. as follows :

al'x
f

-p... + af>j* = *,, 1

an'x' + .:. + aM*P> = Knt

ajx' + . . . + a^x = Kr .
-

The consistency of these equations requires that every deter-

minant of the order (n+ i), formed by selecting (n + i) rows

from the array whose elements are the coefficients and abso-

lute terms written in order, shall be zero.

If the elements of the array fulfill this condition the fact is

expressed thus :

a/ ...a:

a
x

()

K, . . . /C.

<) a ()
* ur

. Kr

o;

the change of rows into columns being purely arbitrary. The

above expression is called a rectangular array, or a matrix.

Art. 26. Homogeneous Linear Systems.

Let the equations of the given system be both linear and

homogeneous ;
thus :

al x> 4. .-, . ; .J. a**&* = o,
]

au
'
x' + . . . + a^x^ = o.

J

Representing the determinant of the coefficients by E, the

general solution, as given by the formula (3) of Art. 23, is

x^ = o/E.

That is, all the unknowns are equal to zero, and the equa-

tions have no other solution than this unless

E = o.
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But in this case the value of each unknown is obtainable

only in the indeterminate form o/o. The ratios of the un-

knowns may be readily obtained, however. For, dividing each

equation through by any one of these, as x{s

\ the system (i)

becomes

M 2>

X* JT^ -1 * X{s+ J > r<w >

*
jw-r -t^i xw -ra

xis)
-t- . -t-^

}

- -
^. I

Now the condition E = o establishes the consistency of the

equations (2) involving the {n 1) unknown ratios (Art. 24),

x>_ x^ x^ x
&>

'"
*P

'

x<*>
' "

'*'

Hence, if ii = o the given equations (1) are consistent
;
that is,

the values of the above {n 1) ratios obtained by solving any

(;/ 1) of them will satisfy the remaining equation. Any n

quantities having among themselves the ratios thus determined

will satisfy the given equations. Thus, if x ',
x

Q

"
y

. . . x {n) are

n such quantities, so also are \x ;

,
A x "

,
. . . Xx (u

\ A being any

factor whatever.

The determinant E of the coefficients of the given homo-

geneous linear equations is called the resultant or eliminant of

the system.

When the number of equations is greater than the number

of unknowns the conditions of consistency are expressible in

the form of a rectangular array, as in Art. 25.

As an example, consider the five equations

2x 2>y + 2 =
> 4* y z

>

~~
7X + W + * ~

x + y z = o, $x Sy + z = o.

Dividing each of the first two equations by z and solving

x y
for the two unknowns - and gives

_3
5
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or x\y\z\\2 :3 : 5;

and any three quantities having these ratios will satisfy the

two equations, as 10, 15, and 25. That the third equation is

consistent with the first two is shown by the vanishing of the

determinant

2-3 1=0.
4- 1 - I

-7 3 1

If all the equations are consistent the determinant of the

coefficients of any three of them must vanish
;
that is,

= o.2 4-
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Hence, when a determinant is equal to zero, the co-factors

of the elements of any line are proportional to the co-factors of

the corresponding elements of any parallel line.

Art. 28. Sylvester's Method of Elimination.*

Let it be required to eliminate the unknown from the two

equations
a

%
x% + ay -f- a x

x+ a, = O,

by -f- b
x
x -\- b = o.

This will be done by what is called the dialytic method, the

invention of which is due to Sylvester. Multiplying the first

of the given equations by x, and the second by x and x* suc-

cessively, the result is a system of five equations, viz.:

a
%
x%

-\- ay -f- a x
x -f- a = o,

a
3
x* -\- ay + ay + a

Q
x = o,

by -f b
x
x + b = o,

b
%
x% + by -f- b x = o,

by + b
x
x" + by = a m

The eliminant of these five equations, involving the four

unknowns x, x*, x\ and x* is (Art. 24)

=
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obtained which involve as unknowns the first (m -\- n i)

powers of x. The eliminant of these equations is a determinant

of the order {ni -\- n), which is of the nth. degree in terms of

the coefficients of the equation of the mt\\ degree, and vice

versa. The law of formation of the eliminant is obvious.

The same method may be used in eliminating one or both

the variables from a pair of homogeneous equations.

As an example, let it be required to eliminate the variables

from the equations

2x* $*y 9J
3 = o and 3^ jxy 6y = o.

x
Dividing the first by y\ and multiplying by ;

the second

x
by y*, and multiplying by twice in succession, there result,

3 3 4X X X X
in all, five equations involving , , -r, and . Eliminating

these four ratios gives

E~ o 2 5 9

25 09 o

o 3-7-6
o 3-76 o

,3-7-6 o o

the vanishing of which shows that the two given equations are

consistent.

Prob. 31. Test the consistency of each of the following systems
of equations:

(1) x+y+2Z=g, x+y z=o, 2xy-\-z=$, * 3)'+ 22=1;

(2) x y 2Z =0, x 2y + z = o, 2X $y z = o;

(3) ix*y
- xf = o, Sx*y + Sx/ - 5/ = o.

Prob. 32. Find the ratios of the unknowns in the equations

2x -{-y 2z = o, 4W y 42 = o, 2iv + x 5V + * = o-

Prob. 33. In the equations

ak'x' -f- +<**<*>*<"> + ak
(n+W+1) 5s o, [i ..n]

prove that *':...: x(n)
: x<n+1) :: M' : . . . : MM : M<n+

, where
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( i)' *M is the determinant obtained by deleting the *th column
from the rectangular array

M~ a/ ... a<*> a^
M+1)

an'... a a***

Prob. 34. From **+*? + *! = "* + ?+* = Mx+Xy + nz

p q r

X
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The result of such transformation is

(.Ai + iAtK + fa-Ai + *M*% =
>

%

(*.Ai + **h)*i + (M + .A.K - o-

The vanishing of the determinant

*A, + iA. x* + **

tf
aAi + <*.At *n*n + ad>

is the condition that the equations (3) may be consistent
;
that

is, the condition that they may have solutions other than

u
x
= O = , (Art. 26). Now the equations (3) may be consist-

ent because of the consistency of the equations (1), in which

case the determinant

a
%%
an

vanishes. Or, this condition failing, and the equations (1)

thus having no solution other than x
l
=. o = x%y the equations

(3) will still be consistent if the equations (2) are so ; that is,

if the determinant

K K <
6
>

vanishes. The vanishing of either of the determinants (5) or

(6), therefore, causes the determinant (4) -to vanish. It follows

that (5) and (6) are factors of (4) ;
and since their product and

the determinant (4) are of the same degree with respect to

the coefficients an , . . , blx , . . . .r, they are the only factors.

Hence,
a

x\
a

xi
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The process indicated by this formula may be described as

follows :
*

To form the determinant \pltH \>
which is the product of

two determinants \a1>n \

and \&un \,
first connect by plus signs

the elements in the rows of both \a1>n \

and
|

b
1<n \

. Then place

the first row of \aun \ upon each row of \b 1>n \

in turn and let

each two elements as they touch become products. This is

the first row of \pu \.
Perform the same operation upon \bhn \

with the second row of \ahH \
to obtain the second row of \p1>n \

I

and again with the third row of
|tf 1)M |to obtain the third row

f|A.|; etc -

Any element of this product is

Pks = *Ai + a**K + + **A.. (9)

When the two determinants to be multiplied together are

of different orders the one of lower order should be expressed

as a determinant of the same order as the other (Art. 22), after

which the above rule is applicable.

The product of two determinants may be formed by

columns, instead of by rows as above. In this case the result

is obtained in a different form. Thus the product of the de-

terminants (5) and (6) by columns is

aiA% + a*A* aiA* + a*&*

Prob. 41. Form the following products :

(3)

Prob. 42. Generalize the last example (see Prob. 22, Art. 18).

Prob. 43. By forming the product

(1)
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show that the product of two numbers, each the sum of four

squares, is itself the sum of four squares.

Art. 30. Product of Two Arrays.

The process explained in the preceding article may be ap-

plied to form what is conventionally termed the product of

two rectangular arrays. It will appear, however, that multi-

plying two such arrays together by columns leads to a result

radically different from that obtained when the product is

formed by rows.

Let the two rectangular arrays be

and M.A.
,AAs

The product of these by columns is

= *.Ai + aj^ a
xJ>x > + aj>%l aju + aj>%l

*iAi + *t'Ai #iAs + iAi ^.3^13 + &*J>*t

The determinant A is plainly equal to zero, being the prod-

uct of two determinants formed by adding a row of zeros to one

of the given rectangular arrays and a row of elements chosen

arbitrarily to the other.

In general, the product by columns of two rectangular

arrays having m rows and ft columns, m being less than
,
is a

determinant of the nth order whose value is zero.

Multiplying together the above rectangular arrays by rows,,

the result is

J' =

a^a x%

lAl + *lAi + *lA. *xxK + iAt + iAi

+ *,A.

&*A*

a,, a. KA
bj>.

In the same manner it may be shown that the product by
rows of two rectangular arrays having m rows and n columns,

m being less than n, is a determinant of the mth
order, which

may be expressed as the sum of the n \/m ! {n m) ! determinants
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formed from one of the arrays by deleting {it m) columns,
each multiplied by the determinant formed by deleting the

same columns from the other array.

Art. 31. Reciprocal Determinants.

The determinant formed by replacing each element of a

given determinant by its co-factor is called the reciprocal of

the given determinant.* Thus, the reciprocal of

a,, a.

a,a av

dnxdn-i. (1,

IS AA
A A** 21-"- 22

. .A.

. .A,

A nlAm .

The product of these two determinants is

6.4=

(tn\Au-\-. . . .-\~annAm an iA<n-\-. . .-\-annA 2n . . . . amA n \-\-- -\-annA nn

Each element on the principal diagonal of this product is

equal to S (Art. 18), while all the other elements vanish (Art.

19). Hence,
6. A = So... o(w)

o d . . . o

<T, or A = 6'

oH o . . . <?

That is, the reciprocal of a determinant of the nih order is

equal to its (n i)
th

power.
* The term reciprocal as here used has reference to the algebraic transforma-

tion concerned in the passage from point coordinates to line coordinates, called

reciprocation. The reciprocal of a determinant is also called the determinant

adjugate.
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Chapter III.

PROJECTIVE GEOMETRY.

By George Bruce Halsted,

Professor of Mathematics in the University of Texas.

Art. 1. The Elements and Primal Forms*

i. A line determined by two points on it is called a
'

straight.'

2. On any two points can be put one, but only one, straight,

their '

join.'

3. A surface determined by three non-costraight points on

it is called a '

plane.'

4. Any three points, not costraight, lie all on one and only

one plane, their 'junction.'

5. If two points lie on a plane, so does their join.

6. The plane, the straight, and the point are the elements

in projective geometry.

7. A straight is not to be considered as an aggregate of

points. It is a monad, an atom, a simple positional concept as

primal as the point. It is the 'bearer
'

of any points on it. It

is the bearer of any planes on it.

8. Just so the plane is an element coeval with the point. It

is the bearer of any points on it, or any straights on it.

9. A point is the bearer of any straight on it or any plane

on it.

10. A point which is on each of two straights is called

their '

cross.'

* This Chapter treats Projective Geometry entirely by the synthetic method.

Metric relations are not considered, and nothing is borrowed from Analytic

Geometry.



ART. 1.]
THE ELEMENTS AND PRIMAL FORMS. 71

11. Planes all on the same point, or straights all with the

same cross, are called '

copunctal.'

12. Any two planes lie both on one and only one straight,

their
' meet.'

13. Like points with the same join, planes with the same

meet are called costraight.

14. A plane and a straight not on it have one and only one

point in common, their '

pass.'

15. Any three planes not costraight are copunctal on one

and only one point, their '

apex.'

16. While these elements, namely, the plane, the straight,

and the point, retain their atomic character, they can be united

into compound figures, of which the primal class consists of

three forms, the '

range,' the '

flat-pencil,' the '

axial-pencil.'

17. The aggregate of all points on a straight is called a

*

point-row,' or '

range.' If a point be common to two ranges,

it is called their ' intersection.'

18. A piece of a range bounded by two points is called a

'
sect.'

19. The aggregate of all coplanar, copunctal straights is

called a 'flat-pencil.' The common cross is called the '

pencil-

point.' The common plane is called the 4

pencil-plane.'

20. A piece of a flat-pencil bounded by two of the straights,

as sides,' is called an '

angle.'

21. The aggregate of all planes on a straight is called an

'

axial-pencil/ or 'axial.' Their common meet, the *

axis,' is

their bearer.

22. A piece of the axial bounded by two of its planes, as

sides, is called an ' axial angle.'

23. Angles are always pieces of the figure, not rotations.

24. No use is made of motion. If a moving point is spoken

of, it is to be interpreted as the mind shifting its attention.

25. When there can be no ambiguity of meaning, a figure

in a pencil, though consisting only of some single elements of

the complete pencil, may yet itself be called a pencil. Just so,

certain separate costraight points may be called a range.
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Art. 2. Projecting and Cutting.

26'. To '

project
'

from a fixed point M (the
'

projection-

vertex
')

a figure, the '

original,' composed of points B, C, D,

etc., and straights b, c, d, etc., is to construct the '

projecting

straights
'

MB, MC, MD, and the '

projecting planes
'

Mb, Mc,

Md. Thus is obtained a new figure composed of straights and

planes, all on M, and called an '

eject
'

of the original.

27. To ' cut
'

by a fixed plane ju (the
'

picture-plane ')
a

figure, the '

subject,' made up of planes /?, y, 6, etc., and

straights b, c, d, etc., is to construct the meets /*/?, py, jud, and

the passes jub, p.c, jud. Thus is obtained a new figure com-

posed of straights and points, all on }x, and called a ' cut
'

of

the subject. If the subject is an eject of an original, the cut

of the subject is an '

image
'

of the original.

28. Axial projection. To project from a fixed straight m
(the

'

projection-axis '),
an original composed of points B, C, D,

etc., is to construct the projecting planes mB, mC, mD. Thus

is obtained a new figure composed of planes all on the axis m,

and called an '

axial-eject
'

of the original.

29. To cut by a fixed straight m (to 'transfix
')

a subject

composed of planes /3, y, #, etc., is to construct the passes

mft, my, md. The cut obtained by transfixion is a range on

the ' transversal
'

m.

30. Any two fixed primal figures are called '

projective
'

(7\) when one can be derived from the other by any number of

projectings and cuttings.*

Art. 3. Elements at Infinity.

31. It is assumed that for every element in either of the

three primal figures there is always an element in each of the

others.

*Pascal (1625-62) and Desargues (1 593-1662) seem to have been the first to

derive properties of conies from the properties of the circle by considering the

fact that these curves lie in perspective on the surface of the cone.
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32. On each straight is one and only one point
' at infinity,'

or '

figurative' point. The others are *

proper
'

points. Any
point going either way (moving in either ' sense

')
ever forward

on a straight is at the same time approaching and receding
from its point at infinity. The straight is thus a closed line

compendent through its point at infinity.

33.
' Parallels

'

are straights on a common point at infinity.

34. Two proper points in it divide a range into a finite sect

and a sect through the infinite. Its figurative point and a

proper point in it divide a range into two sects to the infinite

('rays').

35. All the straights parallel to each other on a plane are on

the same point at infinity, and so form a flat-pencil whose pen-

cil-point is figurative. Such a pencil is called a '

parallel-flat-

pencil.'

36. All points at infinity on a plane lie on one straight at

infinity or figurative straight.* Its cross with any proper

straight on the plane is the point at infinity on the proper

straight.

37. Parallel-flat-pencils on the same plane have all a

straight in common, namely, the straight at infinity on which

are the figurative pencil-points of all these pencils.

38. Two planes whose meet is a straight at infinity are

called parallel.

39. All the planes parallel to each other are on the same

figurative straight, and so form an axial pencil whose axis is at

infinity. Such an axial is called a parallel-axial.

40. All points at infinity and all straights at infinity lie on

a plane at infinity or figurative plane. This plane at infinity is

common to all parallel-axials, since it is on the axis of each.

Prob. 1. From each of the three primal figures generate the other

two by projecting and cutting.

* This statement should not be interpreted as descriptive of the nature of

infinity. In the Function Theory it is expedient to consider all points in a

plane at infinity as coincident.
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Art. 4. Correlation and Duality.

41. Two figures are called * correlated
' when every element

of each is paired with one and only one element of the other.

Correlation is a one-to-one correspondence of elements. The

paired elements are called 'mates.'

42. Two figures correlated to a third are correlated to each

other. For each element of the third has just one mate in

each of the others, and these two are thus so paired as to be

themselves mates.

43. On a plane, any theorem of configuration and deter-

mination, with its proof, gives also a like theorem with its

proof, by simply interchanging point with straight, join with

cross, sect with angle.*

This correlation of points with straights on a plane is

termed a '

principle of duality.' Each of two figures or theo-

rems so related is called the ' dual
'

of the other,f

Prob. 2. When two coplanar ranges ///,
and m 9

are correlated as

cuts of a flat-pencil M, show that the figurative point Pv or Q
9

,
of

the one is mated, in general, to a proper point P9

>
or Q l ,

of the

other.

Prob. 3. Give the duals of the following:

1'. Two coplanar straights determine a flat-pencil on their cross.

2'. Two coplanar flat-pencils determine a straight, their
' concur/

3,. Two points bound two '

explemental
'

sects.

Prob. 4. To draw a straight crossing three given straights, join

the passes of two with a plane on the third.

Art. 5. Polystims and Polygrams.

44,. A '

polystim
'

is a system of 44'. A '

polygram
'

is a system
n coplanar points (' dots '), with of n coplanar straights (* sides '),

all the ranges they determine with all the flat-pencils they de-

(' connectors '). Assume that no termine ('fans'). Assume that

three dots are costraight. no three sides are copunctal.

* Culmann's Graphic Statics (Zurich, 1864) made extensive use of duality.

Reye's Geometrie der Lage (Hannover, 1866) was issued as a consequence of the

Graphic Statics of Culmann.

f In Analytic Geometry the principle of duality consists in the interpretation

of the same equation in different kinds of coordinates point and line or point

and plane coordinates.
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In each dot intersect (n i)

connectors, going through the re-

maining (n i) dots. So there

are n(n i)/2 connectors.

45,. For n greater than 3, the

connectors will intersect in

points other than the dots. Such

intersections are called 'codots.'

46,. There are

n(n i)(n 2){n 3)/8 codots.

In each side concur (n 1)

fans, going through the remain-

ing (n 1) sides. So there are

n(n i)/2 fans.

45'. For n greater than 3, the

fans will concur in straights other

than the sides. Such concurs

are called
'

diagonals.'

46'. There are

n(n i){n 2){n 3)/8 diago-
nals.

Proof of 46,. In a polystim of n dots there are n(n i)/2

connectors. These connectors intersect in

[n(n i)/2][( i)/2
-

i]/2 = n(n i)(;z
2 - n- 2)/8

points ; i.e., the number of different combinations of n(n i)/2

things, two at a time.

But some of these intersections are dots, and the remaining
ones are codots. Now (n 1) of these connectors meet at

each dot. Therefore each dot is repeated (n 1) in 2)/2

times; or the number of times the connectors intersect in

points not codots, i.e. in dots, is n{n i)(n 2)/2.

Therefore the number of codots is

n(ti i)(;/
2 n 2)/8 n{n i)( 2)/2

= [n(n i)/8][^
a n2-4(n- 2)]

=
(/* \){n 2){n 3)/8.

47,. A set of n connectors may-

be selected in several ways so

that two and only two contain

each one of the n dots. Such

a set of connectors is called a

*

complete set
'

of connectors.

48,. There are (n 1) 1/2

complete sets of connectors.

47'. A set of ;/ fans may be

selected in several ways so that

two and only two contain each

one of the 71 sides. Such a set

of fans is called a
'

complete set
*

of fans.

48'. There are ( 1) \/2

complete sets of fans.

Proof of 48,. In a polystim of n dots there are through any

single dot ( 1) connectors, and hence (0 i){n 2)/2

pairs of connectors. Consider one such pair, as BC and BE.
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The number of different sets (each of n 2 connectors)

from C to E through A, D, F, G> etc. [there being {n 3)

such dots], is (n 3) !, i.e. the number of permutations of

{n 3) things. Hence the number of complete sets of con-

nectors having the pair BC and BE is [n 3) ! Therefore the

whole number of complete sets of connectors is

(n _ I)(
_ 2)[(

_
3) !]/2

_
(
_

j) !/2.

49,. In any complete set of 49'. In any complete set of

connectors, when n is even, the fans, when n is even, the first and

first and the (/2+ i)th are the (/2+i)th are called '

op-

called
'

opposite '. posite.'

5o x
. A '

tetrastim
'

is a system 50'. A '

tetragram
'

is a system
of four dots with their six con- of four straights with their six

nectors. Each pair of opposite fans. Each pair of opposite fans

connectors intersect in a codot. concur in a diagonal. These

These three codots determine three diagonals determine the

the
'

codot-tristim
'

of the tetra-
'

diagonal-trigram
'

of the tetra-

stim. gram.

51. Two correlated polystims whose paired dots and co-

dots have their joins copunctal are called 'copolar.'

52. Two correlated polystims whose paired connectors in-

tersect and have their intersections costraight are called

4 coaxal.'

53. If two non-coplanar tristims be copolar, they are coaxal.

For since AA' crosses BB\ therefore AB and A'B' intersect on

the meet of the planes of the tristims.

54. If two non-coplanar tristims be coaxal, they are copolar.

For since AB intersects A fB r

,
these four points are coplanar.

The three planes ABA'B', ACA'C\ BCB'C are copunctal.

Hence so are their meets AA\ BB\ CO,

55. By taking the angle between the planes evanescent, is

seen that coplanar coaxal tristims are copolar ;
and then by

reductio ad absurdum that coplanar copolar tristims are coaxal.

56. If two coplanar polystims are copolar and coaxal they

are said to be *

complete plane perspectives.' Their pole and
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axis are called the ' center of perspective' and the ' axis of

perspective.'

57. If two coplanar tristims are copolar or coaxal, they are

complete plane perspectives.

58. If two coplanar polystims are images of the same poly-
stim from different projection vertices Vlt Vif they are com-

plete plane perspectives. For the joins of pairs of correlated

points are all copunctal (on the pass of the straight V
i
F2

with the picture plane), and the intersections of paired con-

nectors are all costraight (on the meet of the picture plane

and the plane of the original).

Frob. 5. In a hexastim there are 15 connectors and 45 codots.

In a hexagram there are 15 fans and 45 diagonals.

Prob. 6. If the vertices of three coplanar angles are costraight,

their sides make three tetragrams whose other diagonals are copunc-
tal by threes four times. [Prove and give dual.]

Prob. 7. The corresponding sides of any two funiculars of a

given system of forces cross on a straight parallel to the join of the

poles of the two funiculars.

Art. 6. Harmonic Elements.

59. Fundamental Theorem. If two correlated tetrastims

lie on different planes whose meet is on no one of the eight

dots, and if five connectors of the one intersect their mates,,

then the tetrastims are coaxal. For the two pairs of tristims

fixed by the five pairs of intersecting connectors being coaxal

are copolar. Hence the sixth pair of connectors are coplanar.

60. If the tetrastims be coplanar, and if five intersections of

pairs of correlated connectors are costraight, this the coplanar

case can be made to depend upon the other by substituting

for one 6f the tetrastims its image on a second plane meeting

the first on the bearer of the five intersections.

61. If the axis m is a figurative straight, the theorem reads :

If of two correlated tetrastims five pairs of mated connectors

are parallel, so are the remaining pair.

62. Four costraight points are called
' harmonic points,' or
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a ' harmonic range,' if the first and third are codots of a tetra-

stim while the other two are on the connectors through the

third codot.

63. By three costraight points and their order the fourth

harmonic point is uniquely determined. For if the three points

in order are A, B, C, draw any two straights through A, and a

third through B to cross these at K and M respectively. Join

CK, crossing AM at N. Join CM, crossing AK at L. Then the

join LN crosses the straight ABC, always at the same point D,
the fourth harmonic to ABC separated from B.

64. In projecting from a point not coplanar with it a

tetrastim defining a harmonic range, the four harmonic points

are projected by four coplanar straights, called ' harmonic

straights' or a 'harmonic flat-pencil.'

65. The four planes projecting harmonic points from an

axis not coplanar with them are called 'harmonic planes,' or a

harmonic axial-pencil.'

66. Projecting or cutting a harmonic primal figure gives

always again a harmonic primal figure.

67. By three elements of a primal figure, given which is the

second, the fourth harmonic is completely determined.

68. Defining harmonic points by the tetrastim distinguishes
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two points made codots from the other two. Yet it may be

shown that the two pairs of points play identically the same

role.

First, from the definition of four harmonic points each sep-

arated two may be interchanged without the points ceasing to

be harmonic [or, if ABCD is a harmonic range, so is also

ADCB, CBAD, and CDAB\ For the first and third remain

codots.

Second, to prove that in a harmonic range the two pairs of

separated points may be interchanged without the four points

ceasing to be harmonic [or, if ABCD is a harmonic range

(and therefore ADCB, CBAD, and CDAB), then also is BADC
y

DABC, BCDA, and DCBA] : Through the third codot O draw

the joins AO and CO. These determine on the connectors

NK, KL, LM, and MN four new points, S, T, U, V, respec-

tively. The tetrastim KTOS has for two codots A and C, and

has a connector though B; hence its remaining connector TS
must pass though D. In like manner, the connector UV of

the tetrastim MVOU must pass through D y
and a connector

of each of the tetrastims LUOTand VNSO through B. There-

fore B and D are codots of a tetrastim STUV with the remain-

ing connectors, one through A, one through C.

69. The separated points A and C are called
'

conjugate

points,' as also are B and D. Either two are said to be 'har-

monic conjugates
'

with respect to the other two.

Prob. 8. To determine the join of a given point M with the in-

accessible cross X of two given straights n and n'.
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Through M draw any two straights crossing ndXB and B\ and '

at D and D' . Join Z>Z? and Z/i?', crossing on A. Through A draw

any third straight crossing
n at B" and

'
at Z>".

Join ^'Z>" and >'",
crossing at Z. Then LM
is the join required.

Proof. The tetrastim

XBMD makes AB'C'D'
a harmonic range, as

XB'LD' does AB"C"D". But projecting AB"C"D" from X,
and cutting the eject by AB'D' gives a harmonic range. Therefore

C", C", and X are costraight.*

Prob. 9. Through a given point to draw with the straight-edge

a straight parallel to two given parallels.

Prob. 10. To determine the cross of a given straight m with the

inconstructible join x of two given points N and N'. Join any two

points on m with JV

and N'
y giving b

and b' on JV
f
d and

</' on N*i Join the

crosses db and </''

by 0. On a take

any third point join-

ing with N in b"

and with AT/
in d" .

Join the crosses b'd" and <W by /. Then Im is the cross re-

quired. [From Prob. 8, by duality.]

Prob. 11. Cut four coplanar non-copunctal straights in a har-

monic range.

Prob. 12. On a given straight determine a point from which the

ejects of three given points form with the given straight a harmonic

pencil.

Art. 7. Projectivity.

70. Two primal figures of three elements are always pro-

jective. If one be a pencil, take its cut by a transversal. If

the bearers of ABC and A'B 'C be not coplanar, join AA\
BB\ CC\ and cut these joins by a transversal, ;/z. Then ABC
and A'B'C are two cuts of the axial mAA'

,
mBB'

,
mCC'.

* Numerous problems in Surveying may be solved by the application of the

preceding principles, but such application has not been found advantageous in

practice. See Gillespie's Treatise on Land Surveying, New York, 1872.
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If the bearers are coplanar, take on the join A A' any two

projection vertices M and M\ Join MB and Mf

B\ crossing

at &'\ join MC and M'C
, crossing at C" . Join B"C" crossing

AA' at A". Then ABC and A'B'C are images of A"B"C" .

71. If any four harmonic elements are taken in one of two

projective figures, the four elements correlated to these are also

harmonic. For both ejects and cuts of harmonic figures are

themselves harmonic.

72. Two primal figures are projective if they are so corre-

lated that to every four harmonic elements of the one are

correlated always four harmonic elements of the other. For

the same projectings and cuttings which derive A'B'C from

ABCv\\\ give D x
from D. Therefore A'B'CD, is harmonic.

But by hypothesis A'B 'C '

D' is harmonic. Therefore D
1
is D '.

73. If two primal figures are projective, then to every con-

secutive order of elements of the one on a bearer corresponds

a consecutive order of the correlated elements of the other on

a bearer.

74. Two projective primal figures having three elements

self-correlated are identical. For two self-correlated elements

cannot bound an interval containing no such element, since

they must harmonically separate one without it from one

within.

75. Two ranges are called
'

perspective
'

if cuts of the same

flat pencil.

Two flat pencils are perspective if cuts of the same axial

pencil, or ejects of the same range. Two axials are perspective

if ejects of the same flat pencil.

A range and a flat pencil, a range and an axial pencil, or a

flat pencil and an axial are perspective if the first is a cut of

the second.

76,. If two projective ranges 76'. If two coplanar projective

not costraight have a self-corre- flat pencils not copunctal have

lated point A, they are perspec- a self-correlated straight a, they

tive. are perspective.
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Let the join of any pair of

correlated points BB f
cross the

join of any other pair CC at V.

Projecting the two given

ranges from V, their ejects are

identical, since they are projec-

tive and have the three straights

VA, VBB\ VCC' self-corre-

lated.

Let the cross of any pair of

correlated straights bb' join the

cross of any other pair cc' by m.

Cutting the two given flat pen-

cils by m, their cuts are identical,

since they are projective and

have the three points tna, mbb\
mcc' self-correlated.

Art. 8. Curves of the Second Degree.

7 7 r If two coplanar non-

copunctal flat pencils are pro-

jective but not perspective, the

crosses of correlated straights

form a
'

range of the second de-

gree,' or
'

conic range.
'

77'. If two coplanar non-

costraight ranges are projective

but not perspective, the joins of

correlated points form a
'

pencil

of the second class,' or 'conic

pencil.'

78,. If two copunctual non-

costraight axial pencils are pro-

jective but not perspective, the

meets of correlated planes form

a
'

conic surface of the second

order,' or 'cone.'

78'. If two copunctal non-

coplanar flat pencils are projec-

tive but not perspective, the

planes of correlated straights

form a
'

pencil of planes of the

second class,' or * cone of planes.'

79. All results obtained for the conic range or the conic

pencil are interpretable for the cone or cone of planes, since

the eject of a conic is a cone and the cut of a cone is a conic.

8o,. On the cross A of any pair 80'. On the join a of any pair

of correlated straights a and a
x

of correlated points A and A
1
of
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of the projective flat pencils V

and V
x
draw two straights u

and u
x
.

The cuts ABC and A
X
B

X
C

X

being projective and having a

pair of correlated points A, A x

coincident, are perspective, both

being cuts of the pencil on V2f

the cross of the

joins BB X
and

cc,.

Any straight

d of ^crossing
u at B>, is then

correlated to

the join of V
x

with the cross

>
x
of u

x
and

the join DVV

Any d crosses

its d
x
so deter-

mined, at P, a point of the conic

range k.

8 1,. The pencil-points V, Vx

of the generating pencils pertain

to the conic, since their join

VV
X

is crossed by the element

correlated to it in either pencil

at its pencil-point.

the projective ranges u and u
x

take two points V and V
x
.

The ejects abc and a
x
b

x
c

x

being projective and hav-

ing a pair of correlated

straights a, a
x coincident,

are perspective, both be-

ing ejects of the range on

a ,
the join of the crosses

bb
x
and cc

x
.

Any point D of u,

joined with V by d, is

then correlated to the

cross of u
x
with the join dx

of V
x

and the cross du
t
.

Any D joined to its D
x
so de-

termined, gives p a straight of

the conic pencil K,

8i'. The bearers u, u
x
of the

generating ranges pertain to the

conic, since their cross uu
x

is

joined to the element correlated

to it in either range by its bearer.
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82,. The straight on V corre-

lated to V
x
V is called the '

tan-

gent' at V. Every other straight

on V is its join with a second

point of the conic.

83^ On any straight, as #, on

any point A of the conic, its

second element is its cross M
with the join VX

VV

84,. From the five given points

VV
t
AMZ

}
of > construct a sixth,

P. The cross D of u with the

join VP, and the cross D
x
of u

x

with the join V
X
P are costraight

with F2
. Therefore* the three

opposite pairs in every complete
set of connectors of a hexastim

whose dots are in a conic inter-

sect in three costraight codots

whose bearer is called a ' Pascal

straight.'

This hexastim has sixty Pascal

straights, since it has sixty com-

plete sets of connectors.

85,. The ejects of the points

of a conic from any two are pro-

jective.

86,. By five of its points a

conic is completely determined.

87,. Instead of five points

may be given the two pencil-

points and three pairs of corre-

lated straights. If one given

straight is the join of the pencil-

points, then four points and a

tangent at one of them are given.

Thus by four of its points and

the tangent at one of them a

*
Pascal, 1640.

82'. The point on u correlated

to u
x
u is called the

'

contact ! on

u. Every other point on u is its

cross with a second straight of

the conic.

83'. On any point, as V, on

any straight a of the conic, its

second element is its join q with

the cross u
xu^

84'. From the five given

straights u, ,, a, q-y
rlt

of K con-

struct a sixth DD
,
or p. The

join d of V with the cross up,

and the join dx of V
x
with the

cross u
xp are copunctal with w

2
.

Therefore f the three opposite

pairs in every complete set of

fans of a hexagram whose sides

are in a conic concur in three

copunctal diagonals whose bearer

is called a
' Brianchon point.'

This hexagram has sixty Brian-

chon points, since it has sixty

complete sets of fans.

85'. The cuts of the straights

of a conic by any two are pro-

jective.

86'. By five of its straights a

conic is completely determined.

87'. Instead of five straights

may be given the two bearers

and three pairs of correlated

points.

If one given point is the cross

of the bearers, then four straights

and a contact point on one of

them are given.

Thus by four of its straights

and a contact-point on one of

f Brianchon, 1806.
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conic is completely determined.

88^ By three of its points

and the tangents at two of them

the conic is completely deter-

mined.

89^ Interpreting a pentastim

as a hexastim with two dots

coinciding gives: In every com-

plete set of connectors of a pen-

tastim whose dots are in a conic,

two pairs of non-consecutive

connectors determine by their

two intersections a straight on

which is the cross of the fifth

connector with the tangent at

them a conic is completely de-

termined.

88'. By three of its straights

and the contact-points on two

of them the conic is completely
determined.

89'. Interpreting a pentagram
as a hexagram with two sides

coinciding gives: In every com-

plete set of fans of a pentagram
whose sides are in a conic, two

pairs of non-consecutive fans

determine by their two concurs

a point on which is the join of

the fifth fan-point with the con-

tact-point on the opposite side.

the opposite dot.

Thence follows the solution of the problems

90^ Given five points of a

conic, to construct tangents at

the points, using the ruler only.

9 1 j.* The hexastim with a

pair of opposite connectors re-

placed by tangents gives: The

intersections of the two opposite

pairs in every complete set of

connectors of a tetrastim with

dots in a conic are both costraight

with the crosses of the two pairs

of tangents at opposite dots.

Or: A tetrastim with dots in

a conic has each pair of codots

costraight with a pair of fan-

points of the tetragram of tan-

gents at the dots.

90'. Given five straights of a

conic, to find contact-points on

the straights, using the ruler only.

91'. The hexagram with a pair

of opposite fans replaced by con-

tact-points gives: The concurs

of the two opposite pairs in every

complete set of fans of a tetra-

gram with sides in a conic are

both copunctal with the joins of

the two pairs of contact-points

on opposite sides.

Or: A tetragram with sides in a

conic has each pair of diagonals

copunctal with a pair of con-

nectors of the tetrastim of con-

tacts on the sides.

The figure for 91, and that for 91' are identical, and

called Maclaurin's Configuration. (See page S6.)

92,. The tangents of a conic 92'. The contact-points of a

range are a conic pencil. conic pencil are a conic range.

* Due to Maclaurin, 1748.
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93. The points of a conic range may now be conceived as-,

all on a curve, a ' conic curve,' their bearer. The straights of

the corresponding conic pencil,

tangents of this conic range, may
now also be conceived as all on

this same conic curve on which

are their contact-points. Conse-

quently the conic curve is dual to

itself, and so the principle of dual-

ity on a plane receives an impor-
tant extension.

94. It follows immediately from

their generation that all conies are

closed curves, though they may
be compendent through one or

two points at infinity. With two

points at infinity the curve is called

'hyperbola ;' with one, 'parabola;*

with none,
'

ellipse.'
*

95. If a point has on it tan-

gents to the curve, it is called

'without' the curve; if none,
* within

'

the curve. The contact-

point on a tangent is
' on

'

the curve ; all other points on a tan-

* The generation shows that a straight cuts the curves in two points and

that from any point two tangents to the curves may be drawn. Hence the

curves are of the second order and of the second class, that is they are identical

with the conies of analytic geometry. Analytically the equations P-\-XQ = o,.

P' -f- XQ' = o, where P, Q, P', (7 are linear functions of point coordinates,

represent two projective pencils, the correlated rays corresponding to the same

value of A. Hence the locus of the intersection of correlated rays is repre-

sented by PQ' P '

Q = o, a second-degree point equation. Projective ranges

are represented by R -j- XS o, R' + AS' = o, where R, S, R', S' are linear

functions of line coordinates. The envelope of the joins of correlated points is

represented by R S' R'S = o, a second-degree line equation.

The projective generation of conies is developed synthetically in Steiner's

Theorie der Kegelschnitte, 1866, and in Chasles' Geometrie superieure, 1852.

For the analytic treatment see Clebsch, Geometrie, vol. 1, 1876.
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gent are without the curve. Every straight in its plane con-

tains innumerable points without the curve, since the straight

crosses every tangent.

Prob. 13. Given four points on a conic and the tangent at one
of them, draw the tangent at another.

Prob. 14. If the n sides of a polygram rotate respectively about
n fixed points not costraight, while {n 1) of a complete set of fan-

points glide respectively on (n 1) fixed straights, then every remain-

ing fan-point describes a conic*

Prob. 15. In any tristim with dots on a conic the three crosses

of the connectors with the tangents at the opposite dots are

costraight.f

Prob. 16. If two given angles rotate about their fixed vertices

so that one cross of their sides is on a straight, either of the other

three crosses describes a conic. \

Prob. 17. Construct a hyperbola from three given points, and

straights on its figurative points.

Art. 9. Pole and Polar.

96. Taking every tangent to a conic as the dual to its own

contact-point fixes as dual to any given point in the plane one

particular straight, its
'

polar,' of which the point is the

'pole.'

97. With reference to any given conic, to construct the

polar of any given point in its plane. Put on the given point

Z two secants crossing the curve, one at A and D, the other at

B and C. The join of the other codots X and Y of ABCD is

the polar of Z, Varying either secant, as ZBC, does not

change this polar, since on it must always be the cross 5 of

the tangents at A and D, and also the point which D and A
harmonically separate from Z (given by each of the variable

tetrastims BXCY).
98. The join of any two codots of a tetrastim with dots on

a conic is the polar of the third codot with respect to that

* Due to Braikenridge, 1735.

f From Pascal
;
dual from Brianchon.

\ Given by Newton in Principia, Book I, lemma xxi, under the name of

'the organic description
" of a conic.
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conic, and either codot is the pole of the join of the other

two. Any point is harmonically separated from its polar by
the conic.

99. To draw with ruler only the tangents to a conic from

a point without, join it to the crosses of its polar with the

conic.

ioo,. Two points are called 100'. Two straights are called

'conjugate' with reference to a 'conjugate' with reference to a

conic if one (and so each) is on conic if one (and so each) is on

the polar of the other. the pole of the other.

ioij. All points on a tangent 101'. All straights on a con-

are conjugate to its contact- tact-point are conjugate to its

point. tangent.

io2j. The points of a range 102'. The straights of a flat

are projective to their conjugates pencil are projective to their

on its bearer. conjugates on its bearer.

103^ With reference to a given 103'. With reference to a given

conic, the
'

kerncurve,' the conic, the 'kerncurve,' the poles

polars of all points on a second of all tangents on a second conic

conic make a conic pencil, whose make a conic range, whose bearer

bearer is the
'

polarcurve
'

of is the
'

polarcurve
'

of the second

the second conic. conic.

Prob. 18. Either diagonal of a circumscribed tetragram is the

polar of the cross of the others.

Prob. 19. A pair of tangents from any point on a polar harmoni-

cally separate it from its pole.

Prob. 20. A pair of tangents are harmonic conjugates with respect

to any pair of straights on their cross which are conjugate with

respect to the conic.

Art. 10. Involution.

104. If in a primal figure of four elements (a throw
')

first

any two be interchanged, then the other two, the result is pro-

jective to the original.

[That is, ABCD a BADC a CDAB a DCBA.~]
Let ABCD be a throw on m. Project it from V. Cut this

eject by a straight (m') on A. The cut is AB'CD'. Now

project ABCD from C. The cut of this latter eject by VB is
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B'BVH. Project B'BVH fromD and cut the eject hyui. The
cut is B'AD'C, which is perspective to BADC.

105. Two projective primal figures of the same kind of ele-

ments and both on the same bearer are called '

conjective.'

When in two conjective primal figures one particular element

has the same mate to whichever figure it be regarded as be-

longing, then every element has this property.

If AA'BB' is projective to A'AB'X, then by 104, AA'BB'
is projective to AA'XB', and having three elements self-corre-

lated, they are identical.

106. Two conjective figures such that the elements are

mutually paired (' coupled ')
form an ' Involution.' For exam-

ple, the points of a range, and, on the same bearer, their con-

jugates with respect to a conic, form an involution. Every

eject and every cut of an involution is an involution.

107. When two ranges are projective, the point at infinity

of either one is correlated to a point of the other called its

*
vanishing point.'

108. When two conjective ranges form an involution the

two vanishing points coincide in a point called the ' center
'

of

the involution.

109. If two figures forming an involution have self-corre-

lated elements, these are called the ' double
'

elements of the

involution. An involution has at most two double elements
;

for were three self-correlated, all would be self-correlated.

HO. If a primal figure of four elements is projective with

a second made by interchanging two of these elements, they

harmonically separate the other two.

For project the range ABCD from Fand cut the eject by a
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straight on A. The cut AB'CD' is projective to ABCD,
which by hypothesis is projec-

tive to ADCB. Therefore

ADCB is perspective to

AB'CD'. So VCC is on the

cross X of the joins DB' and

BD'. So B and D are codots

of the tetrastim VD'XB'
',
while A and C are on the connectors

through C, the third codot.

in. If an involution has two double elements these sepa-

rate harmonically any two coupled elements. Let A and C be

the double elements. Then ABCB' is projective to AB'CB -

r

therefore by no ABCB' is harmonic.

1 1 2. An involution is completely determined by two couples.

For the projective correspondence AA'B . . . 7\ A'AB' ... is

completely determined by the three given pairs of correlated

elements, and since among them is one couple, so are all corre-

lated elements couples.

113. When there are double elements, then the elements

of no couple are separated by those of another couple. In-

versely, when the elements of one couple separate those of

another, then the elements of every couple are separated by
those of every other, and there are no double elements.

114'. The three pairs of op-

posite fan-points of a tetragram
are projected from any projec-

tion-vertex by three couples of

an involution of- straights.

114,. The three pairs of op-

posite connectors of a tetrastim

are cut by any transversal in

three couples of a point involu-

tion.*

*Due to Desargues, 1639.
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Let QRST be a tetrastim of which the pairs of opposite
connectors RT and QS, ST and QR, QT and RS are cut by

any transversal respectively in A and A', B and ', C and C\
From the projection-vertex Q y

the ranges ATPR and ACA'Br

are perspective. But A TPR and ABA'C are perspective from

5. Therefore ACA'B' is projective to ABA'C, and therefore

to^'C042?( 104). Since thusA and ^4' are coupled, so
( 105)

are i? and i?', and 6? and C .

115. To construct the sixth point C of an involution of

which five points are given, draw through C any straight, on

which take any two points Q and T. Join AT, B'Q crossing

at R. Join BT, A'Q crossing at 5. The join RS cuts the

bearer of the involution in C '.

Prob. 21. Find the center O of a point involution of which two

couples AA'BB' are given.

Prob. 22. If two points M and iV on m are harmonically sepa-

rated by two pairs of opposite connectors of a tetrastim, then so are

they by the third pair.

Prob. 23. To construct a conic which shall be on three given

points, and with regard to which the couples of points of an involu-

tion on a given straight shall be conjugate points.

Art. 11. Projective Conic Ranges.

116. Four points on a conic are called harmonic if they

are projected from any (and so every) fifth point on the conic

by four harmonic straights.

117. A conic and a primal figure or two conies are called

projective when so correlated that every four harmonic ele-

ments of the one correspond to four harmonic elements of the

other.

118. If a conic range and a flat pencil are projective, and

every element of the one is on the correlated element of the

other, they are called perspective. A conic is projected from

every point on it by a flat pencil perspective to it. Inversely

the pencil-point of every flat pencil perspective to a conic is,

on the conic.
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119. Two conies are projective if flat pencils respectively

perspective to them are projective. Therefore any three

.elements in one can be correlated to any three elements in

the other, but this completely pairs all the elements.

120. Two different conic ranges on the same bearer have

at most two self-correlated elements.

121. Two different coplanar conic ranges with a point V
in common are projective if every two points costraight with

V are correlated. For both are then perspective to the flat

pencil on V. Every common point other than V is self-corre-

lated ; but V only when they have there a common tangent.

They can have at most three self-correlated points.

122. If a flat pencil V and conic range k are coplanar and

projective but not perspective, then at most three straights of

the pencil are on their correlated points of the conic
;
but at

least one.

For any flat pencil M perspective to k is projective to F,

and with it determines in general a second conic range which

must have in common with k every point which lies on its

correlated straight of V, So if more than three straights of V
were on their correlated points of k, the conies would be iden-

tical and V perspective to k.

Again, since every conic is compendent, and so divides its

plane into two severed pieces, therefore the two different conies

if they cross at their cotnmon point M must cross again, say

at P. In this case the straights VP and MP are correlated,

and so VP is on the point P correlated to it on k.

In case they do not cross at their common point M, the

straight VM corresponds to the common tangent at M, and so

to the point M correlated to it on k.

123. Two projective conic ranges on the same curve form

an involution if a pair of points are doubly correlated. Besides

the couple AA V let B and B
x
be any other two correlated

points, so that AA
X
B corresponds to A

x
ABr The cross of

AA
X
and BB

X
call U, and its polar u. Project AA X

B from Br
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Project A tABl
from B. The ejects BX{AA XB) and B(A X

AB
X}

are projective, and having the straight BX
B (or BBX) self-corre-

lated, so are perspective. The crosses of their correlated ele-

ments are therefore costraight. But the cross of B
X
A with its

correlated straight BA X
is known to be on u, the polar of U, the

cross of AA
,
with BB

X
. Likewise the cross of B

X
A

X
with BA

is on u. Therefore the point Cx
correlated to C is the cross

of CU with the curve. So C and C
x .are coupled.

124. If two conic ranges form an involution, the joins of

coupled points are all copunctal on the ' involutioncenter.'

125. Calling projective the conic pencils dual to projective

conic ranges, if these ranges form an involution, so do the

pencils, and the crosses of coupled tangents are all costraight

on the ' involutionaxis.'

So two conic pencils forming an involution are cut by each

of their straights in two ranges forming an involution. Two
conic ranges forming an involution are projected from each of

their points in two flat pencils, forming an involution.

126. If the involutioncenter lies without the conic bearer

of an involution, it has two double elements where it is cut by

the involutionaxis.

127. To construct the self-correlated points of two pro-

jective conic ranges on the same conic. Let A, B, C be any

three points of k, and A
x ,
B

x , Cx
their correlated points of kv

The projective flat pencils A(A X
B

X
C

X) and A X{ABC) have AA
X

self-corresponding, hence they are perspective to a range on

the join u of the cross of AB
X
and A

X
B with the cross of AC

X
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and A
X
C. The crosses of the conic and this join n are the

self-correlated points of k and k
x
.

128. If the dots of a tetrastim are on a conic, the six points

where a straight not on a dot cuts the conic and two pairs of

opposite connectors form an involution.

For the two flat pencils in which the two crosses of m
with the conic, P, Pi9 and two opposite dots R, T, are pro-

jected from the other two dots Q, S, are projective, and con-

sequently so are the cuts of these flat pencils by tn\ that is,

PBP
X
A a PA X

P
X
B

X
. But PA

X
P

X
B

X
A P

X
B

X
PA

X
. Therefore

PBP
X
A 7\P

X
B

X
PA

X
.

129,. Conies on which are the 129'. Copunctal tangents to

dots of a tetrastim are cut by a conies on which are the sides of

transversal in points of an involu- a tetragram form an involution,

tion. At its double points the The double straights touch two

transversal is tangent to two of of those conies at the pencil-

those conies. point.

Prob. 24. The pairs of points in which a conic is cut by the

straights of a pencil whose pencil-point is not on the conic form an

involution.

Art. 12. Center and Diameter.

130. The harmonic conjugate of a point at infinity with

respect to the end points of a finite sect is the ' center
'

of that

sect.

131. The pole of a straight at infinity with respect to a

certain conic is the ' center
'

of the conic.

132. The polar of any figurative point is on the centre of

the conic, and is called a ' diameter.'

133. If a straight crosses a conic the sect between the

crosses is called a ' chord.'

The center of a conic is the center of all chords on it.

134. The centers of chords on straights conjugate to a

diameter are all on the diameter.

135. Two diameters are conjugate when each is the polar

of the figurative point on the other.
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136. The tangents at the crosses of a straight with a conic

cross on the diameter which is a conjugate to that straight.

137. The joins of any point on the conic to the crosses of a

diameter with the conic are parallel to two conjugate diameters.

138. Of two conjugate diameters, each is on the centers of

the chords parallel to the other
;
and if one crosses the conic,

the tangents at its crosses are parallel to the other diameter.

139. The center of an ellipse is within it, for its polar does

not meet the curve, and so there are no tangents from it to the

curve. The centre of a parabola is the contact point of the

figurative straight. The centre of a hyperbola lies without the

curve, since the figurative straight crosses the curve. The tan-

gents from the center to the hyperbola are called '

asymptotes.'
Their contact-points are the two points at infinity on the

curve.

140. If a diameter which cuts the curve be given, the tan-

gents at its crosses can be constructed with ruler only, and so

however many chords on straights conjugate to the diameter.

141. Every flat pencil is an involution of conjugates with

respect to a given conic. Hence the pairs of conjugate diam-

eters of a conic form an involution.

If the conic is a hyperbola, the asymptotes are the double

straights of the involution. Hence any two conjugate diam-

eters of a hyperbola are harmonically separated by the asymp-

totes ; and since the hyperbola lies wholly in one of the two

explemental angles made by the asymptotes, one diameter

cuts the curve, the other does not.

142. Any one pair of conjugate diameters of an ellipse is

always separated by any other pair. Any one pair of conjugate

diameters of a hyperbola is never separated by any other pair.

143. If a tangent to a hyperbola cuts the asymptotes at A
and then the contact-point B is the center of the sect AC,

since the tangent cuts the harmonic pencil made by the diame-

ter through B y
the conjugate diameter and the asymptotes, in

the harmonic range ABCD where D is at infinity. Just so the
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center of any chord is the center of the costraight sect bounded

by the asymptotes.

144. If a point is the center of two chords it is the center

of the conic, for its polar is the figurative straight.

145. As many points as desired of a conic may be con-

structed by the ruler alone.

With the aid of one fixed conic all problems solvable by
ruler and compasses can be solved by ruler alone, that is, by

pure projective geometry. For example : Of two projective

primal figures (say ranges) on the same bearer, given three

pairs of correlated elements to find the self-corresponding ele-

ments, if there be any. Project the two ranges from any point

V of the given conic. These ejects are cut by the conic in

projective conic ranges. Of these determine the self-correlated

points by 127.

Project these from V. The ejects cut the bearer of the

original ranges in the required self-correlated points.

Prob. 25. Find the crosses of a straight with a conic given only

by five points'.

Prob. 26. Given a conic and its center, find a point B such that

for two given points A, C, the center of the sect AB shall be C.

Prob. 27. The join of the other extremities of two coinitial sects

is parallel to the join of their centers.

Prob. 28. In an ellipse let A and B be crosses of conjugate diam-

eters CA, CB with the curve. Through A' the cross of the diameter

conjugate to CA with the curve draw a parallel to the join AB. Let

it cut the curve again at B f
. Then CB' is the diameter conjugate

to CB.

Art. 13. Plane and Point Duality.

146!. On a plane are 00
5

points, 146'. On a point are 00
2

planes,

a '

point-field.' a '

plane-sheaf.'

147,. The oo
1

planes of a sin- 147'. The oo
1

points of a sin-

gle axial pencil have on them all gle range have on them all the

the points of point-space; so planes of plane-space; so there

there are just oo
3

points. are just oo
3

planes.

Point-space is tridimensional. Plane-space is tridimensional.
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148. With the straight as element, space is of four dimen-

sions.

On a plane are oo
2

straights,

a 'straight-field.'

On a straight are 00
1

planes,

and so 00
3

straights.

On each of the 00
2

points on

a plane are the 00
2

straights of a

straight-sheaf; so there are just

oo
4

straights.

i49j. Two planes determine a

straight, their meet.

i50j. Two planes determine an

axial-pencil on their meet.

15 1
j.
Two bounding planes

determine an axial angle.

152,. A plane and a straight

not on it determine a point, their

pass.

i53j. An axial pencil and a

plane not on its bearer deter-

mine a flat pencil.

154^ Three planes determine

a point, their apex.

155^ Three planes determine

a plane-sheaf.

156^ iVo coplanar straights

are copunctal.

157. Any figure, or the proof of any theorem of configu-

ration and determination, gives a dual figure or proves a dual

theorem by simply interchanging point with plane. Thus all

the pure projective geometry on a plane may be read as geom-

etry on a point.

Prob. 29. If of straights copunctal in pairs not all are copunctal,
then all are coplanar.

Prob. 30. On a given point put a straight to cut two given straights.

Prob. 31. If two triplets of planes afty, a'ft'y' are such that

the meets fty and ft'y', yoc and y'a\ aft and a'ft' lie on three

planes a", ft", y" which are costraight, then the meets <xa'
y ftft\

yy' are coplanar.

On a point are oo
2

straights, a
1

straight-sheaf.'

On a straight are 00 points,

and so 00
3

straights.

On each of the oo
2

planes on

a point are the oo
2

straights of a

straight-field; so there are just
oo

4

straights.

149'. Two points determine a

straight, their join.

150'. Two points determine a

range on their join.

151'. Two bounding points

determine a sect.

152'. A point and a straight

not on it determine a plane.

153'. A range and a point not

on its bearer determine a flat

pencil.

154'. Three points determine

a plane, their junction.

155'. Three points determine

a point-field.

156'. Two copunctal straights

are coplanar.
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Prob. 32. Describe the figures in space dual to the polystim and
the polygram.

Art. 14. Ruled Quadric Surfaces.

158. The joins of the correlated points of two projective

ranges whose bearers are not coplanar form a ' ruled system
'

of straights no two coplanar. For were two coplanar, then

two points on the bearer tn and two on the bearer m
x
would

all four be on this plane, and so m and m
x coplanar, contrary

to hypothesis.

159. Let the straights n,n iy
//

2
be any three of the elements

of a ruled system, and iV
2 any point on ;/

2 . Put a plane on iV
2

and the straight n if and let its pass with n be called N. The

straight NN^ cuts n> n iy n.2 all three. Projecting the generating

ranges of the ruled system (on the bearers m and m
Y) from the

straight iv7V2 (or m
Q) as axis produces two projective axial

pencils, which having three planes m2n, mji x , mjt^ self-corre-

sponding, are identical. Therefore every pair of correlated

points of the ranges on m and ;;/, is coplanar with ;;/
2 ; that

is, m^ cuts every element of the ruled system.

By varying the point N^ 00
*

straights are obtained, all cutting

all the oo
1

straights of the original ruled system and making
on every two projective ranges. Of the straights so obtained

no two cross, for that would make two of the first ruled system

coplanar.

Either of these two systems may be considered as generating

a 'ruled surface,' which is the bearer of both. Each of the

two systems is completely determined by any three straights

of the other, and therefore so is the ruled surface also. From

the construction follows that the straights of either ruled

system cut all the straights of the other in projective ranges.

So any two straights of either system may be considered as

bearers of projective ranges generating the other system, or

indeed the ruled surface.

160. On each point of this ruled surface are two and only

two straights lying wholly in the surface (one in each ruled
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system). So a plane on one straight of the ruled surface is

also on another straight of this

surface.

161. If in the two generating

projective ranges the point at

infinity of one is correlated to the

point at infinity of the other, the

ruled surface is called a '

hyper-

bolic-paraboloid.'

The join of these figurative

points is on the figurative plane.

Therefore the plane at infinity

cuts the surface in a straight and so has a second straight in

common with the ruled surface.

That a hyperbolic-paraboloid has two straights in common
with the plane at infinity may also be proved as follows :

Call the bearers of the generating ranges m and mlt and let

n, n
x
be any two elements, and /the element at infinity. By

159 the ruled surface may be considered as generated by the

straights on the three elements n, n
x , /. But all these straights

must be parallel to the same plane, namely, to any plane on/.
On /and each one of these straights put a plane ;

these planes

make a parallel-axial-pencil, and cut any two of the original

elements in projective ranges with the figurative points corre-

lated. Therefore the figurative straight joining the figurative

points of n and #, is wholly on the ruled surface.

162. From 161 follows that all straights pertaining to the

same ruled system on a hyperbolic-paraboloid are parallel to

the same plane. Such planes are called '

asymptote-planes.'

A hyperbolic-paraboloid is completely determined by two non-

coplanar straights and an asymptote-plane cutting them. To

get an element cut the two given straights by any plane par-

allel to the asymptote-plane, and join the meets.

163. Three non-crossing straights, all parallel to the same

plane, completely determine a hyperbolic-paraboloid. Let m,

tnv ///, be the given straights. The passes of planes on m%
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with m and m
l
are projective ranges whose joins are a ruled

system.

But from the hypothesis one of these planes is parallel to

both m and m.. Therefore their points at infinity are corre-

lated and the ruled surface is a hyperbolic-paraboloid.

164. If two non-coplanar projective ranges be each axially

projected from the bearer of the other, two projective axial

pencils are formed, with those planes correlated on which are

the correlated points of the ranges. If A, A
l
be correlated

points, then the straight AA 1
is the meet of correlated planes.

Thus two projective axial pencils with axes not coplanar gen-

erate a ruled system. If the whole figure be cut by a plane,

this will cut these axial pencils in two projective flat pencils,

and the conic generated by these will be the cut of the ruled

surface. So every plane cuts it in a conic or a pair of straights.

Hence no straight not wholly on the surface can cut it in more

than two points. The surface is therefore of the second degree

(quadric).

If the plane at infinity cuts the ruled surface in a pair of

straights, it is a hyperbolic-paraboloid. If not, it is called a

1

hyperboloid of one nappe,' a fig-

ure of which is here shown.

164J. Copunctal straights par-

allel to the generating elements of

a hyperboloid of one nappe are on

a cone. Copunctal straights par-

allel to the generating elements of

a hyperbolic-paraboloid are on a

system of two planes.

For the figurative plane cuts

the hyperboloid of one nappe in a

conic curve, but cuts the hyper-

bolic-paraboloid in two straights ;

and each of the copunctal straights

goes to a point of the figurative cut.

165. Each straight in one ruled system of a hyperboloid of
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one nappe is parallel to one, but only to one, straight in the

other ruled system. Of the straights on a hyperbolic-parabo-
loid no two are parallel. Let n and n

x , any two elements of

one ruled system, be the bearers of the generating ranges R
and R,. If V is the vanishing point of R, then the straight on

V parallel to n
x
is an element of the other ruled system. But

for the hyperbolic-paraboloid Fis itself a figurative point.

1 66. Any straight of one ruled system on a ruled surface is

called a '

guide-straight
'

of the other ruled system.

167!- A ruled system is cut by 167'. A ruled system is pro-

any two of its guide-straights in jected from any two of its guide-

projective ranges. straights in projective axial pen-
cils.

For if m, mit
m

%
be any three guide-straights of the ruled

system, the planes on m^ cut m and m
1
in projective ranges the

joins of whose correlated points are the elements of the ruled

system. Again, if the points on mt be projected axially from

m and * the meets of the planes so correlated are the ele-

ments of the ruled system.

168. Four straights of a ruled system are called harmonic

straights if they are cut in four harmonic points by one (and so

by every) guide-straight. By three straights, no two coplanar,

a fourth harmonic is determined lying in a ruled system with

the given three and on a fourth harmonic point to any three

costraight points of the given three.

169. A plane cutting the ruled surface in a straight m of one

ruled system and consequently also in a straight n of the other

ruled system has in common with the surface no point not on

one of these straights. For any straight from such a point

cutting both these straights would lie wholly on the ruled sur-

face
;
and so therefore would their whole plane, which is im-

possible. Any third straight coplanar with m and n on their

cross has no second point in common with the surface and so

is a tangent, and the plane of m and n is called tangent at their

cross, the point tnn.
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The number of planes tangent to the ruled surface and on

a given straight equals the number of points the straight has

in common with the ruled surface, that is two
;
so the ruled

surface is of the second class.

170. Project the two generating ranges of a ruled system
from any projection-vertex Fnot on it. The eject consists of

two copunctal projective flat pencils. The plane of any two

correlated straights is on an element of the ruled system. All

such planes form a cone of planes.

The points of contact of these planes with the ruled surface

are a conic range. The planes tangent to a ruled surface at

the points on its cut with a plane form a cone of planes.

171. The cut of a hyperbolic-paraboloid by a plane not on

an element has on it the meets of the plane with the two figu-

rative elements, and so is a hyperbola except when their cross

is on the plane, in which case it is a parabola. The figurative

plane is a tangent plane.

172. The planes tangent at the figurative points of a hyper-

boloid of one nappe are all proper planes, copunctal and form-

ing a cone of planes tangent to the '

asymptote-cone
'

of the

hyperboloid. Each element to the asymptote-cone is parallel

to one element of each ruled system.

Any plane not on an element of the hyperboloid of one

nappe cuts it in a hyperbola, parabola, or ellipse, according as

it is parallel to two elements, one, or no element of the asymp-

tote-cone, that is, according as it has in common with the figu-

rative conic on the hyperboloid two points, one, or no point.

173. If an axial pencil and a ruled system are projective,

they generate in general a ' twisted cubic curve,' which any

plane cuts in one point at least and three at most. For a

plane cuts the ruled system in a conic range perspective to it,

of which in general three points at most lie on the correspond-

ing planes of the pencil.

174. The ruled quadric surface is the only surface doubly
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ruled. The figure of two so united ruled systems is one of the

most noteworthy discovered by the modern geometry.*

175. To find the straights crossing four given straights.

Let u
lt u.

t ,
u

% ,
u

t
be the given straights. Projecting the range

R
t
on u

x
from the axes u

2 and u
% gives two axial pencils, each

perspective to R
t ,
and consequently projective. The meets of

their correlated planes are all the oo
1

straights on u
x ,u^, u%r

and form a ruled system of which ult
u

2 ,
u

z
are guide-straights.

The two projective axial-pencils cut the fourth straight u
K in

two '

conjective
'

ranges. [Two projective primal figures of the

same kind and on the same bearer are called conjective.] If

now a straight m of the ruled system crosses u
A ,
then the two

correlated planes of which this straight m is the meet must cut

u
K
in the same point, which consequently is a self-correspond-

ing point of the two conjective ranges. Since there are two

such (the points common to u
t
and the ruled surface), so there

are two straights (real or conjugate imaginary) crossing four

given straights. Their construction is shown to depend on

that for the two self-correlated points of two conjective ranges.

This important problem in the four-dimensional space of

straights,
' what is common to four straights ?

'

is the analogue

of the problem in the space of points,
' what is common to

three points?' and its dual in the space of planes,
' what is

common to three planes?
*

It shows not only their fundamental diversity, but also, as

compared to points-geometry and planes-geometry, the inher-

ently quadratic character of straights-geometry.

Prob. S3- Find the straights cutting two given straights and

parallel to a third.

Prob. 34. Three diagonals of a skew hexagram whose six sides

are on a ruled surface are copunctal.
*

Prob. 35. If a flat pencil and a range not on parallel planes are

projective, then straights on the points of the range parallel to the

correlated straights of the pencil form one ruled system of a hyper-

bolic-paraboloid.

*See Monge, Journal de l'Scole polytechnique, Vol. I.
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Prob. 36. What is the locus of a point harmonically separated
from a given point by a ruled surface ?

Art. 15. Cross-Ratio.

176. Lindemann has shown how every one number, whether

integer, fraction, or irrational, + or
, may be correlated to

one point of a straight, without making any use of measure-

ment, without any comparison of sects by application of a unit

sect.* He gets an analytic definition of the ' cross-ratio
'

of

four copunctal straights. Then this expression is applied to

four costraight points. Then is deduced that the number pre-

viously attached to a point on a straight is the same as the

cross-ratio of that point with three fixed points of the straight.

Thus analytic geometry and metric geometry may be founded

without using ratio in its old sense, involving measurement.

Thus also the non-Euclidean geometries, that of Bolyai-Loba-

chevski in which the straight has two points at infinity, and

that of Riemann in which the straight has no point at infinity,

may be treated together with the limiting case of each between

them, tire Euclidean geometry, wherein the straight has one

but only one point at infinity.

Relinquishing for brevity this pure projective standpoint

and reverting to the old metric usages where an angle is an in-

clination, a sect is a piece of a straight, and any ratio is a

number; distinguishing the sect AC from CA as of opposite
*

sense,' so that AC = CA, the ratio [AC/BC]/[AD/BD] is

called the cross-ratio of the range ABCD and is written [ABCB]
where A and B, called conjugate points of the cross-ratio, may
be looked upon as the extremities of a sect divided internally

or externally by C and again by D.\
* Von Staudt in Beitrage zur Geometrie der Lage, 1856-60, determines the

projective definition of number, and thus makes the metric geometry a conse-

quence of projective geometry.

f The fundamental property of cross-ratio is stated in the Mathematical Col-

lections of Pappus, about 370 A.D. The cross-ratio is the basis of Poncelet's

Traite des propriety projectives, 1822, which distinguishes sharply the projec-

tive and metric properties of curves.
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177. If un ABCD respectively be the straights abed co-

punctal on V, then A C/BC= AA VC/AB VC
or A C/BC = iA V. VC sin (ac)/\B V. VC sin (be).

AD/BD = AA VD/ABVD
= iA V. VD sin (ad)/bV. VD sin (bd).

Therefore [ABCD] = [sin (ae)/s'm (&)]/[sin ^/sin (&/)] .

Thus as the cross-ratio of any flat pencil V[abcd] or axial

pencil u(a/3yd) may be taken the cross-ratio of the cut ABCD
on any transversal.

178. Two projective primal figures are 'equicross;' and

inversely two equicross primal figures are projective.

179. As D approaches the point at infinity, AD/BD ap-

proaches 1. The cross-ratio [ABCD] when D is figurative

equals A C/BC.

180. Given three costraight points ABC, to find D so that

[ABCD] ma)' equal a given number n (-|- or
).

On any

straight on C take A' and B' such that CA'/CB' =n; A' and

B' lying on the same side of C if n be positive, but on opposite

sides if n be negative. Join AA', BB', crossing in V. The

parallel to A'B' on Fwill cut AB in the required D. For if

D' be the point at infinity on A'B\ and ABCD be projected

from V, then A'B'CD' is a cut of the eject ;
so

[ABCD] = [A'B'CD'] =A ,

C/B
,C-n.

181. If [ABCD] = \ABCD^ then Z\ coincides with Z>.

182. If two figures be complete plane perspectives, four

costraight points (or copunctal straights) in one are equicross

with the correlated four in the other. Let O be the center of

perspective. Let M and M' be any pair of correlated points

of the two figures, iV^ and N' another pair of correlated points

lying on the straight OMM' whose cross with the axis of per-

spective is X. Then [OXMN] = [OXM'N'].

That is, [OM/XM]/[ON/XN] = [OM>'/XM']/[ON>
'

/XN'\
Therefore [OM/XM]/[OM'/XM'] = [ON/XN]/[ON'/XN'].
That is, [OXMM'] = [OXNN']; or the cross-ratio [OXMM']
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is constant for all pairs of correlated points M and M' taken

on a straight OX on the center of perspective.

Next let L and L' be another pair of correlated points and

Y the cross of OLL with the axis of perspective. Since LM
and L 'M' cross on some point Z of the axis XY, therefore if

OXMM' be projected from Z, the cut of the eject by OY is

OYLL'. So \dXMM']-=\_dYLLJ] ;
or the cross-ratio \OXMM'\

is constant for all pairs of correlated points.

It is called the 'parameter' of the correlation. When the

parameter equals i, the range OXMM' is harmonic, and two

correlated elements correspond doubly, are coupled, and the

correlation is 'involutorial.'

183. When the correlation is involutorial and the center of

perspective is the figurative point on a perpendicular to the

axis of perspective, this is called the 'axis of symmetry/ and

the complete plane perspectives are said to be '

symmetrical.'

184. When the correlation is involutorial and the axis of

perspective is figurative, then the center of perspective is called

the 'symcenter,' and the complete plane perspectives are said

to be '

symcentral.'

Prob. 37. In a plane are given a parallelogram and any sect.

With the ruler alone find the center of the sect and draw a parallel

to it.

Prob. 38. The locus of a point such that its joins to four given

points have a given cross-ratio is a conic on which are the points.

Prob. 39. If the sides of a trigram are tangent to a conic, the

joins of two of its fan-points to any point on the polar of the third

are conjugate with respect to the conic.

Prob. 40. If from any point of the sect between the contact-

points of a pair of tangents to a parabola straights be drawn parallel

to these tangents, the join of their proper crosses with the tangents
will be a tangent.
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Chapter IV.

HYPERBOLIC FUNCTIONS.

By James McMahon,
Assistant Professor of Mathematics in Cornell University.

Art. 1. Correspondence of Points on Conics.

To prepare the way for a general treatment of the hyper-
bolic functions a preliminary discussion is given on the relations

between hyperbolic sectors. The method adopted is such as

to apply at the same time to sectors of the ellipse, including

the circle; and the analogy of the hyperbolic and circular

functions will be obvious at every step, since the same set of

equations can be read in connection with either the hyperbola
or the ellipse.* It is convenient to begin with the theory of

correspondence of points on two central conics of like species,

i.e. either both ellipses or both hyperbolas.

To obtain a definition of corresponding points, let O
x
A lt

1
B

1
be conjugate radii of a central conic, and O^A 2 , 2B^

conjugate radii of any other central conic of the same species ;

let P
l ,
P

2
be two points on the curves; and let their coordi-

nates referred to the respective pairs of conjugate directions

be (x x , jp,), (x2 , j/2); then, by analytic geometry,
9

a,' b?
~ '

ai 6,'
W

* The hyperbolic functions are not so named on account of any analogy

with what are termed Elliptic Functions. " The elliptic integrals, and thence

the elliptic functions, derive their name from the early attempts of mathemati-

cians at the rectification of the ellipse. ... To a certain extent this is a

disadvantage; . . . because we employ the name hyperbolic function to de-

note cosh u, sinh u, etc., by analogy with which the elliptic functions would be

merely the circular functions cos <p, sin cp, etc. . . ." (Greenhill, Elliptic

Functions, p. 175.)
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(2)

Now if the points P1 ,
P

a
be so situated that

a
x a,' b

x
b*

the equalities referring to sign as well as magnitude, then P
x ,

P
3
are called corresponding points in the two systems. If Qx ,

Q%
be another pair of correspondents, then the sector and tri-

angle Px
O

xQx
are said to correspond respectively with the

sector and triangle P7O^Q^. These definitions will apply also

when the conies coincide, the points Px ,
P

2 being then referred

to any two pairs of conjugate diameters of the same conic.

In discussing the relations between corresponding areas it

is convenient to adopt the following use of the word " measure":

The measure of any area connected with a given central conic

is the ratio which it bears to the constant area of the triangle

formed by two conjugate diameters of the same conic.

For example, the measure of the sector A
x
O

x
P

x
is the ratio

sector A
x
O

x
P

x

triangle A
x
O

x
B

x
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and is to be regarded as positive or negative according as

A
x
O

x
P

x
and A

x
O

x
B

x
are at the same or opposite sides of their

common initial line.

Art. 2. Areas of Corresponding Triangles.

The areas of corresponding triangles have equal measures.
< m ii uiihiiiimmiHiiiM n W i i wiimmjSUbww i i i i r i i mm n i

For, let the coordinates of P
x , Q x

be (xx ,y x ), (x x',y x '\ and let

those of their correspondents P3 , g2
be (xit yt)f (x^y/); let the

triangles Px
O

xQ x , PfiJ2i De Tlt Tit and let the measuring tri-

angles A
x
O

x
B

x , A tOtBt
be K

t ,
K

% ,
and their angles aolt g?

2 ;

then, by analytic geometry, taking account of both magnitude
and direction of angles, areas, and lines,

T\ _ \{xy
f

x

- x;y x)sm gd
x _ x, y^ __ */ y^

K\ i^A sm
i

a
i &i a

i &i

'

/
i \ l

7\ _ j(xjrt'xM sin a>, _ x\ y/ _ x^^K3 \<*J>* sin g?
2

a
2

b
t

a
t b^

Therefore
J-
= ~\ (3)

Art. 3. Areas of Corresponding Sectors.

The areas of corresponding sectors have equal measures.

For conceive the sectors Sl9 S, divided up into infinitesimal

corresponding sectors ; then the respective infinitesimal corre-.

sponding triangles have equal measures (Art. 2) ;
but the

given sectors are the limits of the sums of these infinitesimal

triangles, hence

^ = ^ (4)k
x k;

w
In particular, the sectors A

x
O

x
P

xs A,0,P2
have equal meas-

ures ; for the initial points A l9 A, are corresponding points.

It may be proved conversely by an obvious reductio ad

absurdum that if the initial points of two equal-measured

sectors correspond, then their terminal points correspond.

Thus if any radii O
x
A

x , O^A, be the initial lines of two

equal-measured sectors whose terminal radii are O
x
P

x , Ot
P
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tken PxJ P2
are corresponding points referred respectively to

the pairs of conjugate directions OtA lt
O

x
B

x ,
and OvAv O^B^;

that is,

*i * y: y*

Prob. i. Prove that the sector P
x
O

xQ x
is bisected by the line

joining O x
to the mid-point of P\QV (Refer the points Plt Q x ,

re-

spectively, to the median as common axis of x, and to the two

opposite conjugate directions as axis of y, and show that P
x , Q

are then corresponding points.)

Prob. 2. Prove that the measure of a circular sector is equal to

the radian measure of its angle.

Prob. 3. Find the measure of an elliptic quadrant, and of the

sector included by conjugate radii.

Art. 4. Characteristic Ratios of Sectorial

Measures.

Let A
x
O

x
P

x
=

vS, be any sector of a central conic; draw

P
X
M

X
ordinate to O

x
A

x ,
i.e. parallel to the tangent at A

x
\

let O
x
M

x
= xxi MX

P
X =y,, O x

A
x =#,, and the conjugate radius

O
x
B

x
b

x ;
then the ratios xjax , yjb x

are called the charac-

teristic ratios of the given sectorial measure S
x/Kx

. These

ratios are constant both in magnitude and sign for all sectors

of the same measure and species wherever these may be situ-

ated (Art. 3). Hence there exists a functional relation be-

tween the sectorial measure and each of its characteristic

ratios.

Art. 5. Ratios Expressed as Triangle-measures.

The triangle of a sector and its complementary triangle are

measured by the two characteristic ratios. For, let the triangle

A
x
O

x
P

x
and its complementary triangle Pl

O
x
B

1
be denoted by

T
x , 7V; then

T
x

_ ^ l^ l
sino?

1 _^ 1

(s)

K-
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Art. 6. Functional Relations for Ellipse.

The functional relations that exist between the sectorial

measure and each of its characteristic ratios are the same
for all elliptic, in-

cluding circular, sec-

tors (Art. 4). Let/*,,

P
2 be corresponding

points on an ellipse

and a circle, referred 6

to the conjugate di-

rections O
x
A O

x
B and

2 A0,B^, the latter pair being at

right angles ;
let the angle Afi^P^ = 6 in radian measure; then

K, 1/7
' (6)

= cos -1
at

K
%

bn

sin
[*.
=

*,

hence, in the ellipse, by Art.

cos
K,

-^ = sin
(7)

Prob. 4. Given x x
=

\a\\ find the measure of the elliptic sector

A1O1P1. Also find its area when a
x

=
4, b

x

=
3, a? = 6o.

Prob. 5. Find the characteristic ratios of an elliptic sector whose
measure is \n.

Prob. 6. Write down the relation between an elliptic sector and
its triangle. (See Art. 5.)

Art. 7. Functional Relations for Hyperbola.

The functional relations between a sectorial measure and

its characteristic ratios in the case of the hyperbola may be

written in the form

,
, S,

and these express that the ratio of the two lines on the left is

a certain definite function of the ratio of the two areas on the

right. These functions are called by analogy the hyperbolic

cosh -XI, J
= sinh

;
,
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cosine ana the nyperbolic sine. Thus, writing u for S
x/Kv the

two equations
X V

'

_L = cosh u
t 7^ = sinh u (8)

serve to define the hyperbolic cosine and sine of a given secto-

rial measure u
;
and the hyperbolic tangent, cotangent, secant,,

and cosecant are then defined as follows :

sinh u - cosh&
tanh u = 7, coth u = icosh& sinh w

sech u = : ,
csch u = . >.

cosh u sinh u
J

(9>

The names of these functions may be read "
h-cosine,"'

"
h-sine,"

M
h-tangent," etc.

Art. 8. Relations between Hyperbolic Functions.

Among the six functions there are five independent rela-

tions, so that when the numerical value of one of the functions

is given, the values of the other five can be found. Four of

these relations consist of the four defining equations (9). The

fifth is derived from the equation of the hyperbola

< K '

giving
cosh* 11 sinh2 & = 1. (10}

By a combination of some of these equations other subsidi-

ary relations may.be obtained; thus, dividing (10) successively

by cosh2

u, sinh
2

u, and applying (9), give

1 tanh
2 u = sech2 u

y )

coth
2 u 1 = csch

2
u. )

Equations (9), (10), (11) will readily serve to express the

value of any function in terms of any other. For example,

when tanh u is given,

coth u =
; , sech u = J 1 tanh 2

u,
tanh u
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i I . . tanh u
cosh u =

,
sinh u =

,

V i tanh 2 # y I tanh
2

#

, a/ I tanh 2 #
csch u =

tanh u

The ambiguity in the sign of the square root may usually

be removed by the following considerations : The functions

cosh u, sech u are always positive, because the primary char-

acteristic ratio x
x/a x

is positive, since the initial line O
x
A

x
and

the abscissa O
x
M

x
are similarly directed from O

x ,
on which-

ever branch of the hyperbola Px may be situated; but the func-

tions sinh u, tanh u, coth u, csch u, involve the other charac-

teristic ratio yx/b x , which is positive or negative according as

yx
and b

x
have the same or opposite signs, i.e., as the measure

u is positive or negative ;
hence these four functions are either

all positive or all negative. Thus when any one of the func-

tions sinh u, tanh ?/, csch u, coth ti, is given in magnitude and

sign, there is no ambiguity in the value of any of the six

hyperbolic functions ; but when either cosh u or sech u is

given, there is ambiguity as to whether the other four functions

shall be all positive or all negative.

The hyperbolic tangent may be expressed as the ratio of

two lines. For draw the tangent

line^C= /; then

tanh u = y
b
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Prob. 7. Express all the hyperbolic functions in terms of sinh u.

Given cosh u = 2, find the values of the other functions.

Prob. 8. Prove from eqs. 10, n, that cosh&> sinh u, cosh#>i,
tanh u < r, sech u < 1.

Prob. 9. In the figure of Art. 1, let OA= 2
, OB=i, AOB = 6o,

and area of sector AOP = 3; find the sectorial measure, and the

two characteristic ratios, in the elliptic sector, and also in the hyper-
bolic sector; and find the area of the triangle A OP. (Use tables of

cos, sin, cosh, sinh.)

Prob. 10. Show that coth u, sech u, csch u may each be ex-

pressed as the ratio of two lines, as follows: Let the tangent at P
make on the conjugate axes OA, OB, intercepts OS = m, OT = n\

let the tangent at B, to the conjugate hyperbola, meet OP in R,

making BR =
I; then

coth u = l/a, sech u = m/a, csch u = n/b.

Prob. n. The measure of segment AMP is sinh u cosh u u.

Modify this for the ellipse. Modify also eqs. 10-14, and probs.

8, 10.

Art. 9. Variations of the Hyperbolic Functions.

Since the values of the hyperbolic functions depend only

on the sectorial measure, it is convenient, in tracing their vari-

ations, to consider only sectors of one

half of a rectangular hyperbola, whose

conjugate radii are equal, and to take the

principal axis OA as the common initial

line of all the sectors. The sectorial

measure u assumes every value from 00,

through o, to -f-
00

,
as the terminal point

P comes in from infinity on the lower

branch, and passes to infinity on the upper
branch

;
that is, as the terminal line OP

swings from the lower asymptotic posi-

tion y = x, to the upper one, y = x. It is here assumed,

but is proved in Art. 17, that the sector A OP becomes infinite

as P passes to infinity.

Since the functions cosh u, sinh u
y
tanh u, for any position
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of 0P
X
are equal to the ratios of x, y, t, to the principal radius

a, it is evident from the figure that

cosh o=l, sinh = 0, tanh 0=0, (15)

and that as u increases towards positive infinity, cosh //, sinh u

are positive and become infinite, but tanh u approaches unity

as a limit
;
thus

cosh go = 00
, sinh 00 = co

,
tanh 00 = 1. (16)

Again, as u changes from zero towards the negative side,

cosh u is positive and increases from unity to infinity, but

sinh u is negative and increases numerically from zero to a

negative infinite, and tanh u is also negative and increases

numerically from zero to negative unity ; hence

cosh ( 00) = 00
,

sinh (- 00) = 00, tanh
(

00
)
= 1. (17)

For intermediate values of u the numerical values of these

functions can be found from the formulas of Arts. 16, 17, and

are tabulated at the end of this chapter. A general idea of

their manner of variation can be obtained from the curves in

Art. 25, in which the sectorial measure u is represented by the

abscissa, and the values of the functions cosh u, sinh u, etc.,

are represented by the ordinate.

The relations between the functions of u and of u are

evident from the definitions, as indicated above, and in Art. 8.

Thus

cosh () = + cosn u
>

smn (~~ u
)
= ~~ sm^ u

>
)

sech ()= + sech ?/, csch ()= csch u, > (18)

tanh ( u) = tanh u, coth ( u)
= coth u. J

Prob. 12. Trace the changes in sech u> coth u, csch u, as u passes

from 00 to -}- 00 . Show that sinh #, cosh u are infinites of the

same order when u is infinite. (It will appear in Art. 17 that sinh

u, cosh u are infinites of an order infinitely higher than the order

of u.)

Prob. 13. Applying eq. (12) to figure, page 114, prove tanh u, =
tan A OP.
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Art. 10. Anti-hyperbolic Functions.

X y . t
The equations = cosh u, -r = sinh //, 7 = tanh u, etc.,

x
may also be expressed by the inverse notation u = cosh-1

-,.

_ y t
u = sinh 1

,
u = tanh -1

-T, etc., which may be read: "u is

the sectorial measure whose hyperbolic cosine is the ratio x to

a" etc.
;
or " u is the anti-h-cosine of x/a," etc.

Since there are two values of u, with opposite signs, that

correspond to a given value of cosh u, it follows that if u be

determined from the equation cosh u = m, where m is a given

number greater than unity, u is a two-valued function of m.

The symbol cosh" 1
tn will be used to denote the positive value

of u that satisfies the equation cosh u = m. Similarly the

symbol sech" 1 m will stand for the positive value of u that

satisfies the equation sech u = ///. The signs of the other

functions sinh -1
//z, tanh _1

f, coth-1
;;/, csch" 1

;, are the same

as the sign of m. Hence all of the anti-hyperbolic functions

of real numbers are one-valued.

Prob. 14. Prove the following relations:

cosh" 1
/^ = sinh" 1 Vm* 1, sinh" 1

//* = cosh" 1 Vm* -f- 1,

the upper or lower sign being used according as m is positive, or

negative. Modify these relations for sin
_1

,
cos" 1

.

Prob. 15. In figure, Art. i,let OA = 2,OB = i,AOB = 6o; find

the area of the hyperbolic sector AOP, and of the segment AMPy

if the abscissa of P is 3. (Find cosh -1 from the tables for cosh.)

Art. 11. Functions of Sums and Differences.

(a) To prove the difference-formulas

sinh (// v) = sinh u cosh v cosh // sinh v, )

I 09)
cosh (u v)

= cosh u cosh v sinh u sinh v. )

Let OA be any radius of a hyperbola, and let the sectors AOP,

AOQ have the measures u, v\ then u v is the measure of the

sector QOP. Let OB, OQ be the radii conjugate to OA, OQ;
and let the coordinates of P, Q, Q' be (xl , j/,), (x, y), (x' f y')

with reference to the axes OA, OB; then
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ikr

sinh (
-

Q
= sinh

sector^ = tria"gle ggg [Art. 5.

_ K-^Ji ^) s in < _ j^i % y xx

\a x
b

x
sin a?

~~

b
x
a

x
b

x
a

x

= sinh & cosh z> cosh u sinh #
;

but

cosh (u ^) cosh
SeCt r ^P = triangle/W

[Arfc $>

KxyyS) sin &?_ y ^ _#<
Jtf,^ sin g? ^ a

x
b

x a;

y
b:

(20)

since Q, Q' are extremities of conjugate radii ; hence

cosh (u v) = cosh u cosh ^ sinh u sinh z>.

In the figures u is positive and v is positive or negative.

Other figures may be drawn with u negative, and the language

in the text will apply to all. In the case of elliptic sectors,

similar figures may be drawn, and the same language win
1

apply,

except that the second equation of (20) will be x'/a x
= y/bx ;

therefore

sin (u v) = sin u cos v cos u sin v,

cos {u v)
= cos u cos v -f- sin u sin v.

(b) To prove the sum-formulas

sinh (u + v) sinh u cosh v + cosh u sinh v, )

cosh ( + v)
= cosh a cosh v + sm^ w smh v - S

These equations follow from (19) by changing v into v
%

(21)
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and then for sinh ( v) t cosh ( v), writing sinh v, cosh v

(Art. 9, eqs. (18)).

(c) To prove that tann (uv) = -=
. (22)V v v ' itanhtanhv V ;

Writing tanh ( s>) =s ) -
v , expanding and dividing

cosh (u v)

numerator and denominator by cosh & cosh z/, eq. (22) is ob-

tained.

Prob. 16. Given cosh u = 2, cosh =
3, find cosh (u -\- z>).

Prob. 17. Prove the following identities:

1. sinh 27/ = 2 sinh u cosh .

2. cosh 211 = cosh'tt + sinh
2^ = 1 -f- 2 sinh

2
u = 2 cosh

2 u 1.

3. 1 + cosh u = 2 cosh
2

-#, cosh u 1 2 sinh
2 -.

,
, sinh z/ cosh u 1 /cosh i\*

4. tanh }* = :

- = = -
: .

1 + cosh u sinh u \cosh u -j- 1/

.
,

2 tanh u
, i-4- tanh

2 u
5. sinh 2U = -_

,
cosh 2U .

1 tanh u 1 tanh u

6. sinh 3# = 3 sinh w -j- 4 sinh
3

,
cosh 3 = 4 cosh'tf 3 cosh ^.

1 i-i. * + t,
anh i*

7. cosh -4- sinh u = t^\~r-' '

1 tann -#

8. (cosh + smn )(cosh v + sinh z;)=cosh (& -f- v) + sinh (# -j- v).

9. Generalize (8); and show also what it becomes when u=v= . . .

10. sinh
2
^: cos'_v + cosh

a
a: sin

2
v = sinh

2
^: + sin

2

7.

11. cosh -1
/# cosh _1 == cosh~ 1

\_mn y(m
9

i)(tz
2

i)J.

12. sinh_1 w sinh
-1

>z = sinh
_1
[w y 1 + 2 yi + *?i

Prob. 18. What modifications of signs are required in (21), (22),.

in order to pass to circular functions ?

Prob. 19. Modify the identities of Prob. 17 for the same purpose.

Art. 12. Conversion Formulas.

To prove that

cosh j+ cosh u
%

2 cosh \{u x-\- u9) cosh \(u x
u

7),

cosh u
1

cosh u
t
= 2 sinh \{u x + &,) sinh |(#,~ 9),

sinh #, -j- sinh
it,
= 2 sinh \{u x + 2)

cosh J-(, #
a),

sinh #, sinh u
%
= 2 cosh \{u x + &

a)
sinh

(?/, #
a). ^
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From the addition formulas it follows that

cosh (u -f- v) -J- cosh (u v) = 2 cosh & cosh z/,

cosh ( + v) "" cosn (&?>) = 2 sinh & sinh v,

sinh ( -f- ^) -f- sinh (& z^)
= 2 sinh & cosh v,

sinh (# + z ~~ smn (^
~

*0 2 cosn w smn ^>

and then by writing u-\-v = u iy u v = u%t u = \{u x + a),

v = (, #
2)>

these equations take the form required.

Prob. 20. In passing to circular functions, show that the only
modification to be made in the conversion formulas is in the alge-

braic sign of the right-hand member of the second formula.

... cosh 2U + cosh av cosh 2U -f- cosh av
Prob. 2i. Simplify -r. : r-: , : rr J smn 2 -f sinh av cosh 2 cosh av

Prob. 22. Prove sinh
2
.* sinh

2

.y
= sinh (x -\-y) sinh (x y).

Prob. 23. Simplify cosh
2
.* cosh

2

^ sinh
2* sinh

2

^.

Prob. 24. Simplify cosh
2* cos

2

y + sinh
2* sin

2

ji>.

Art. 13. Limiting Ratios.

To find the limit, as u approaches zero, of

sinh u tanh u

u u

which are then indeterminate in form.

By eq. (14), sinh u> u> tanh u
;
and if sinh u and tanh u

be successively divided by each term of these inequalities, it

follows that Jrr , ^ L vJCk*

^ sinh u ^ ,

1 < < cosh u
t

u

tanh U
sech u < < V

u

but when u-^zO, cosh u = I, sech =: i,Tience

lim. sinh _ Hm. tanh ^ = 1. (24)
u == o u u ==.0 u

\V
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Art. 14. Derivatives of Hyperbolic Functions.

To prove that

^(sinh ft)
(a)

(*)

w

(rf)

w

(/)

du

d(cosh ft)

du

d(tanh ft)

du

<^(sech 2/)

du

d(cotri ft)

du

<f(csch ft)

du

= cosh ft,

= sinh ft,

= sech
2

2/,

= sech u tanh ft,

csch
5

ft,

= csch u coth ft.

(<z) Let y = sinh ft,

jy = sinh (ft + ^w
)
~~ smn *

= 2 cosh \{2u -j- ^) sinh \Au,

Ay .,
.sinh JJ-~ = cosh ( -f ZJft)

* $-; .

Take the limit of both sides, as Au = o, and put

Ay dy </(sinh ft)

lim *

J
=

Hi
= ^ '

lim. cosh (ft + i^) = cosh ft,

(see Art. 13)
sinh \Au

lim. 7 A
= I

iAu

dT(sinh u)

du
= cosh ft.

() Similar to (a).

dftanh u) d sinh 2/

~
<&

'

cosh ft

cosh2 u sinh8
ft

cosh
8 u

W dfa

(25)

I

cosh
3

?/

= sech* .
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j(V) Similar to (c).

. ^(sech u) d i sinh uw ~^^ =
^-^ii^ = -^ih^ =- sechatanh "-

(/) Similar to (e).

It thus appears that the functions sinh u, cosh u reproduce
themselves in two differentiations

; and, similarly, that the

circular functions sin u, cos u produce their opposites in two

differentiations. In this connection it may be noted that the

frequent appearance of the hyperbolic (and circular) functions

in the solution of physical problems is chiefly due to the fact

that they answer the question : What function has its second

derivative equal to a positive (or negative) constant multiple

of the function itself ? (See Probs. 28-30.) An answer such as

y = cosh mx is not, however, to be understood as asserting that

mx is an actual sectorial measure and y its characteristic ratio ;

but only that the relation between the numbers mx and y is the

same as the known relation between the measure of a hyper-

bolic sector and its characteristic ratio
;
and that the numerical

value of y could be found from a table of hyperbolic cosines.

Prob. 25. Show that for circular functions the only modifica-

tions required are in the algebraic signs of (b), (d).

Prob. 26. Show from their derivatives which of the hyperbolic

and circular functions diminish as u increases.

Prob. 27. Find the derivative of tanh u independently of the

derivatives of sinh u, cosh u.

Prob. 28. Eliminate the constants by differentiation from the

equation^ = A cosh mx + B sinh mx, and prove that dy/dx
1 = m?y.

Prob. 29. Eliminate the constants from the equation

y = A cos mx -f- B sin mx,

and prove that d^y/dx' = my.

Prob. 30. Write down the most general solutions of the differen-

tial equations

d*v d*y d*y 4
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Art. 15. Derivatives of Anti-hyperbolic Functions.

(a)

w

^(sinh
-1

x)

dx Vx* + i

d(cosh.~
l

x) __ i

dx

(A ^(tanh-
1

x) i "1W dx i - *_]*<,'

(d\ 4coth~
1

^) _ i -i

1 ^ dx
-

?3TJ^
^(sech

-1
*) iw <r

, -. ^(csch
-1

#)

* Vi *2

I

(26)

x Vx* + I

(#) Let ss sinh""
1

#, then x = sinh &, dx = cosh </

= Vi + sinh
2 udu = Vi -\- x* du, du = <&:/ VT+1?.

{b) Similar to (a).

(c) Let & = tanh" 1

x, then .r = tanh u, dx = seen
2 u du

= (i tanh 2

&)afo
=

(i x*)du, du = dx/i x*.

(d) Similar to (c).

("
4f:,=sK)=7/&-')'%iij-

(/) Similar to
(e).

Prob. 31. Prove

^(sin"
1

x) _ r d(cos~
1

x)_ x

dx Vi x1 ' dx

^(tan
-1

x) _ 1

dx
~

1 + x*

djcot-
1

x)
dx

Vi - x*

1 +x*'
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Prob. 32. Prove

_,x dx x dx
tfsinh =

. ^cosh - =

,
x adx ~| # dt^tr "1

</tanh -=
5 ,

</coth-
1 -=

s 3a a' x l

_\x<a a x a Jx>m

Prob. 33. Find ^(secli"
1

x) independently of cosh-1 *.

Prob. 34. When tanh -1 x is real, prove that coth* 1 x is imagi-

nary, and conversely; except when x = 1.

_ , . sinh" 1 ^ cosh -1 x
Prob. 35- Evaluate -^-, , when x = cc .

Art. 16. Expansion of Hyperbolic Functions.

For this purpose take Maclaurin's Theorem,

/() = Ao)+ /'(o) + 2', y"(o) +
j,

s

/'"(o) + . . .,

and put f(u) = sinh u, f{u) cosh &, f"(u) = sinh ,...,

then /(o) = sinh = 0, /'(o) = cosh o = 1, . . .;

hence sinh u = u + u* + -j
u" -f- . . .

; (27)

and similarly, or by differentiation,

cosh u = 1 H r &
2

H : a
4+ . . . . (28)214!

By means of these series the numerical values of sinh u y

cosh u, can be computed and tabulated for successive values of

the independent variable u. They are convergent for all values

of #, because the ratio of the nth term to the preceding is in

the first case u>

/{2n \){2n 2), and in the second case

u*/(2n 2){2n 3), both of which ratios can be made less than

unity by taking n large enough, no matter what value u may
have.
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From these series the following can be obtained by division :

tanh u u \u
z

-j- T
2
jU

b

-f- j^V*' + . . .,

sech u = i - u* + ^u* TVo^
6 +

coth & = i + i^
3 y* + -gls^

8-
i

U CSCh W = I - -V+ 3J o
^

4-
TAVtf'+

These four developments are seldom used, as there is no

observable law in the coefficients, and as the functions tanh u,

sech u, coth u, csch &, can be found directly from the previously

computed values of cosh u, sinh u.

Prob. 36. Show that these six developments can be adapted to

the circular functions by changing the alternate signs.

7^ Art. 17. Exponential Expressions.

Adding and subtracting (27), (28) give the identities

cosh u + sinh u = 1 + u 4- ri? A Tu* + %
u* + . . . = e

u
,

2! 3! 4!

cosh u sinh u 1 u A -1? -u* + r^* . . . = e~
u

,

2! 3!. ^4!

hence cosh u = J(^
M+ e~% sinh # = (>

u e~u
),

e e
-

2 r (3)
tanh u =

, sech u =
,

etc. 1

e
u
-\-e~

u
eu -\-e'

u
J

The analogous exponential expressions for sin u, cos u are

cos u = \e
ui
+e~

ui
), sin u = (*** e~ ui

\ (i = V 1)

where the symbol e
ui stands for the result of substituting ui for

jc in the exponential development

This will be more fully explained in treating of complex

numbers, Arts. 28, 29.
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Prob. 37. Show that the properties of the hyperbolic functions

could be placed on a purely algebraic basis by starting with equa-
tions (30) as their definitions

;
for example, verify the identities :

sinh ( u) = sinh u, cosh ( u) = cosh u,

cosh
2 u sinh

2 u= 1, sinh (u + v)
= sinh u cosh v -j- cosh u sinh v%,

^ 2

(cosh mii) ,
^ 2

(sinh mu) . ,

Tj = tn cosh mu, '- = m* sinh mu.

Prob. 38. Prove (cosh u -f- sinh )*.
= cosh nu -f sinh nu.

Prob. 39. Assuming from Art. 14 that cosh u, sinh u satisfy the

differential equation d 2

y/du* = y, whose general solution may be
written y = Aeu + Be~u

,
where A, B are arbitrary constants

;
show

how to determined, B in order to derive the expressions for cosh uy

sinh u, respectively. [Use eq. (15).]

Prob. 40. Show how to construct a table of exponential func-

tions from a table of hyperbolic sines and cosines, and vice versa.

Prob. 41. Prove u = log,, (cosh u -f- sinh u).

Prob. 42. Show that the area of any hyperbolic sector is infinite

when its terminal line is one of the asymptotes.

Prob. 43. From the relation 2 cosh u = e
u + e~u prove

2
n_1

(cosh #)
M=cosh nu+n cosh {n2)u-\-\n{n\) cosh (n 4)^4-.. .,.

and examine the last term when n is odd or even.

Find also the corresponding expression for 2*_1 (sinh u)
n
.

Art. 18. Expansion of Anti-Functions.

. dTsinh
-1

x) 1 fw , 9N ,

Since t-j =
7tt^

= (i+ "
)

= I _Iy+ Ii ;,._I3I je
.+ > .

2 24 246

hence, by integration,

sinh x x z T"T" > V3 1
/'23' 245 2467

the integration-constant being zero, since sinh"
1 x vanishes-

with x. This series is convergent, and can be used in compu-
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tation, only when x < I. Another series, convergent when

x >!, is obtained by writing the above derivative in the form

^sin

dx

4_I3I_I3iI, "IT
2 4^ 2 46/ r, "J'

i i

2 X*

.-. sinh"
1 x = C+log x+- t

~l ,+i 3.
1 i--. . .

, (32)
2 2x2

2 4 4** 2 4 6 6;tr
6 w y

where C is the integration-constant, which will be shown in

Art. 19 to be equal to loge 2.

A development of similar form is obtained for cosh
-1

x; for

rf(cosh-x) =
)
_t=1/ _iW

-ir14.II4.II-L4.II 5 1 4. 1
*L T 2^T 24j4T 246j6T "J'

hence

eosh-^C+log.-I^-Ii^-Ilii-..., (33)

in which (7 is again equal to log, 2 [Art. 19, Prob. 46]. In

order that the function cosh
-1 ^ maybe real, x must not be

less than unity; but when x exceeds unity, this series is con-

vergent, hence it is always available for computation.

Again, ^^ =^-1+^+^4 *+-.,

*

and hence tanh"
1 x = x + - *9

-f \x*+ I*7+ . . . , (34)
3 5 7

From (32), (33), (34) are derived:

sech
-1 x = cosh

-1

x
- . x* I.3.*

4

1.3. 5.X
9

, \= C log x - D
\ -

. . .
; (35)5

2.2 2.4.4 2.4.6.6
K0DJ
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csch
-J * = sinh-

1 - = IJ_-lI.1J_I!I_L_i
x x 2 $x* 2 4 $x 246 jx

1

= C_,og *+_-_l_ + _
:
l_l__... ; (36)

coth- * = tanh- I = I + -L + JL. + -L + . . .. (37)

Prob. 44. Show that the series for tanh -1
x, coth-1 x, seen-1 x,

are always available for computation.

Prob. 45. Show that one or other of the two developments of the

inverse hyperbolic cosecant is available.

Art. 19. Logarithmic Expression of Anti-Functions.

Let x = cosh u, then vx2
I = sinh u;

therefore x-\- \ x 1,

I = cosh u -f- sinh u = e
u

,

and u, = cosh" l

x, log {x -j- Vx
2

i). (38)

Similarly, sinh-1^ = log (* + VxT~+ 1). (39)

-V"= log !

x
Also sech -1;r= cosh"1 - == log , (40)

csdi" 1* = sinh" 1! _ log
I + Vl + x

l. (41)X X

Again, let
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Prob. 47. Derive from (42) the series for tanh" 1
.*; given in (34).

Prob. 48. Prove the identities:

x I x I

log*=2tanh"
1 =tanh _1 =sinh" 1

^(^ ^ _1
)=cosh" 1

l(^+^ _1
);

log sec x == 2 tanh -1
tan

2

\x\ log esc x = 2 tanh'
'

tan*(ar -j- ix);

log tan x = tanh -1 cos 2^ = sinh -1
cot 2jc = cosh-1 esc 2X.

Art. 20. The Gudermanian Function.

The correspondence of sectors of the same species was dis-

cussed in Arts. 1-4. It is now convenient to treat of the

correspondence that may exist between sectors of different

species.

Two points Pv Pa ,
on any hyperbola and ellipse, are said to

correspond with reference to two pairs of conjugates O
l
A

1 ,.

1
B

1 ,
and O^A % , %

B
t , respectively, when

xjax
= ajxv (44)

and when
jj/ x , jj/2

have the same sign. The sectors A
x
O

x
Piy

A % 9
P

t
are then also said to correspond. Thus corresponding

sectors of central conies of different species are of the same

sign and have their primary characteristic ratios reciprocal.

Hence there is a fixed functional relation between their re-

spective measures. The elliptic sectorial measure is called

the gudermanian of the corresponding hyperbolic sectorial

measure, and the latter the anti-gudermanian of the former.

This relation is expressed by

SJK, = gd S,/K,

or v = gd u, and u = gd
-1
#. (45)

Art. 21. Circular Functions of Gudermanian.

The six hyperbolic functions of u are expressible in terms

of the six circular functions of its gudermanian ;
for since

= cosh u, = cos v, (see Arts. 6, 7)
a, a,

in which u, v are the measures of corresponding hyperbolic

and elliptic sectors,
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hence cosh u sec v, [eq. (44)]
*

(46)

sinh u = VsecV 1 = tan v

tanh u = tan v/szc v = sin v,

coth u = esc v,

sech u = cosz/,

csch u = cot z\

The gudermanian is sometimes useful in computation ;
for

instance, if sinh u be given, v can be found from a table of

natural tangents, and the other circular functions of v will give
the remaining hyperbolic functions of u. Other uses of this

function are given in Arts. 22-26, 32-36.

Prob. 49. Prove that gd u = sec_1 (cosh u) = tan_1(sinh u)

= cos-1(sech u) =sin~ 1

(tanh u),

Prob. 50. Prove gd~
l v = cosh -1

(sec v) = sinh -1
(tan v)

= sech" 1

(cos v)
= tanh_1 (sin v).

Prob. 51. Prove gd o = o, gd 00 = Jzr, gd( 00)
= ^n,

gd"
1 0=0, gd-^iar) =00, gd-

1(-l 7r
)
=

Prob 52. Show that gd u and gd~
x

z' are odd functions of u, v.

Prob. 53. From the first identity in 4, Prob. 19, derive the rela-

tion tanh \u = tan \v.

Prob. 54. Prove

tanh" J

(tan u) = -J gd 2fc, and tan_1(tanh ^) = ^ gd
_1 2^.

Art. 22. Gudermanian Angle

If a circle be used instead of the ellipse of Art. 20, the

gudermanian of the hyperbolic sectorial measure will be equal

to the radian measure of the angle of the corresponding circular

sector (see eq. (6), and Art. 2, Prob. 2). This angle will be

called the gudermanian angle ;
but the gudermanian function v,

as above defined, is merely a number, or ratio
;
and this number

is equal to the radian measure of the gudermanian angle 6,

which is itself usually tabulated in degree measure
;
thus

e = i%ov/7t (47)



130 HYPERBOLIC FUNCTIONS. [Chap. IV.

Prob. 55. Show that the gudermanian angle of u may be construct-

ed as follows:

Take the principal radius OA of an equilateral hyperbola, as the

. initial line, and OP as the terminal

line, of the sector whose measure is u;

from M, the foot of the ordinate of

P, draw MT tangent to the circle

whose diameter is the transverse axis;

then AOT is the angle required.*
Prob. 56. Show that the angle

never exceeds 90 .

Prob. 57. The bisector of angle AOT
M bisects the sector AOP (see Prob. 13,

Art. 9, and Prob. 53, Art. 21), and the line AP. (See Prob. 1, Art. 3.)

Prob. 58. This bisector is parallel to TP, and the points T, P
are in line with the point diametrically opposite to A.

Prob. 59. The tangent at P passes through the foot of the

ordinate of T, and intersects TM on the tangent at A.

Prob. 60. The angle APM is half the gudermanian angle.

Art. 23. Derivatives of Gudermanian and Inverse.

Let v = gd u, u = gd
_1

v,

then sec v = cosh u,

sec v tan vdv = sinh u du,

sec vdv = du,

therefore ^(gd
_1

v) sec vdv. (48)

Again, dv = cos v du = sech u du y

therefore d(gd u) = sech u du. (49)

Prob. 61. Differentiate:

y = sinh u gd u, y = sin v + gd"
1

v,

y = tanh u sech u -f- gd u, y = tan v sec v -f- gd
-1

v.

* This angle was called by Gudermann the longitude of u, and denoted by lu.

His inverse symbol was It; lnus u H(^)' (Crelle's Journal, vol. 6, 1830.)

Lambert, who introduced the angle 0, named it the transcendent angle. (Hist,

de l'acad, roy de Berlin, 1761). Hottel (Nouvelles Annales, vol. 3, 1864)

called it the hyperbolic amplitude of u, and wrote it amh u, in analogy with the

amplitude of an elliptic function, as shown in Prob. 62. Cayley (Elliptic

Functions, 1876) made the usage uniform by attaching to the angle the name

of the mathematician who had used it extensively in tabulation and in the

theory of elliptic functions of modulus unity.
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Prob. 62. Writing the "elliptic integral of the first kind" in

the form

J Vi - /c
2
sin

2

0'

k being called the modulus, and the amplitude; that is,

= am u, (mod. /c),

show that, in the special case when K =.
1,

u = gd~
l

0, am u gd u
y

sin am = tanh &,

cos am u = sech u, tan am & = sinh u;

and that thus the elliptic functions sin am u, etc., degenerate into

the hyperbolic functions, when the modulus is unity.*

Art. 24. Series for Gudermanian and its Inverse.

Substitute for sech u, sec v in (49), (48) their expansions,

Art. 16, and integrate, then

gdu = u- ' + &u% -
j%^u

1 + . . . (50)

gd-'z, = v+K+^5 +y^7 + (5i)

No constants of integration appear, since gd u vanishes with

u, and gd"
1^ with v. These series are seldom used in compu-

tation, as gd u is best found and tabulated by means of tables

of natural tangents and hyperbolic sines, from the equation

gd u = tan
-1
(sinh u),

and a table of the direct function can be used to furnish the

numerical values of the inverse function
;
or the latter can be

obtained from the equation,

gd
-I

z> = sinh
-1

(tan v) = cosh
-1

(sec v
)>

To obtain a logarithmic expression for gd"V, let

gd"V = u, v = gd u,

* The relation gd u = am u, (mod. 1), led Hoiiel to name the function gd u,

the hyperbolic amplitude of u, and to write itamh u (see note, Art. 22). In this

connection Cayley expressed the functions tanh u, sech u, sinh u in the form

sin gd u, cos gd u, tan gd u, and wrote them sg u, eg u, tg u, to correspond

with the abbreviations sn u, en u, dn u for sin am u, cos am u, tan am u.

Thus tanh u = sg u = sn u, (mod. 1); etc.

It is well to note that neither the elliptic nor the hyperbol'c functions

received their names on account of the relation existing between them in Sl

special case. (See foot-note, p. 107.)
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therefore sec v = cosh u, tan v = sinh u,

sec v + tan v = cosh u -f- sinh u = e
u

,

-\- sin v I cos ($7t -|- #)
*" =

cos v sin (J -f- v)

u, = gd '?, == log, tan (i?r -f j?).

tan (iw+ iv),

(52)

^ , -r. , gd # u~\ gd V z>~|
Prob. 63. Evaluate 2

, f

5 .
(

t

U l=o V _}v=o

Prob. 64. Prove that gd u sin # is an infinitesimal of the fifth

order, when u = o.

Prob. 65. Prove the relations

\n + \v = tan"VM
, \n \v tan"V"M

.

Art. 25. Graphs of Hyperbolic Functions.

Drawing two rectangular axes, and laying down a series of

points whose abscissas represent, on any convenient scale, suc-

cessive values of the sectorial measure, and whose ordinates

represent, preferably on

the same scale, the corre-

sponding values of the

function to be plotted, the

locus traced out by this

series of points will be a

graphical representation of

the variation of the func-

tion as the sectorial meas-
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ure varies. The equations of the curves in the ordinary carte-

sian notation are :

Fig. Full Lines. Dotted Lines.

A y = cosh x, y = seen x
;

B y = sinh x, y = csch x
;

C y = tanh x, y = coth x
;

D y = gd x.

Here ^ is written for the sectorial measure u, and y for the

numerical value of cosh u, etc. It is thus to be noted that the

variables x, y are numbers, or ratios, and that the equation

y = cosh x merely expresses that the relation between the

numbers x and y is taken to be the same as the relation be-

tween a sectorial measure and its characteristic ratio. The
numerical values of cosh//, sinh u, tanh?/ are given in the

tables at the end of this chapter for values of u between o and

4. For greater values they may be computed from the devel-

opments of Art. 16.

The curves exhibit graphically the relations :

sech u = : , csch u = -

, coth u =
cosh u sinh u tanh u

cosh u < 1, sech u > I, tanh u > I, gd u > \n, etc.;

sinh ( u) = sinh u, cosh ( u) = cosh u,

tanh ( u) = tanh u, gd ( u) = gd u, etc.;

cosh 0=1, sinh = 0, tanh = 0, csch (o) =00
, etc.;

cosh ( 00) = 00, sinh ( 00) = 00
,
tanh ( 00)

= 1, etc.

The slope of the curve y = sinh x is given by the equation

dy/dx = cosh x, showing that it is always positive, and that

the curve becomes more nearly vertical as x becomes infinite.

Its direction of curvature is obtained from dy/dx* = sinh x,

proving that the curve is concave downward when x is nega-

tive, and upward when x is positive. The point of inflexion is

at the origin, and the inflexional tangent bisects the angle

between the axes.
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The direction of curvature of the locus y = sech x is given
by (Py/dx

% = sech x{2 tanh 2 *
i), and thus the curve is con-

cave downwards or upwards

\ 4|M' according as 2 tanh 8 x i is

\^ negative or positive. The in-

. flexions occur at the points

x = tanh" 1

.707, = .881,

y = .707 ;
and the slopes of

the inflexional tangents are

1/2.

The curve y = csch x is

asymptotic to both axes, but

approaches the axis of x more

rapidly than it approaches the

axis of y, for when x =
*$, y is

C only .1, but it is not till y = 10

that x is so small as .1. The curves y = csch x, y = sinh x
cross at the points x = .881, y = I.
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Prob. 69. Solve the equations: cosh x = x+ 2; sinh x = U~
gd x = x \n.

* " '

Prob. 70. Show which of the graphs represent even functions
and which of them represent odd ones.

Art. 26. Elementary Integrals.

The following useful indefinite integrals follow from Arts.

14, 15, 23:

Hyperbolic. Circular.

1. J sinh u du = cosh
, Ain u du = cos u

y

2. y cosh udu = sinh 0, /"cos u du = sin #,

3. Aanh udu = log cosh a, Aan udu log cos
,

4. / coth u du = log sinh
,

/ cot ^/ = log sin
,

5. /csch #</# = logtanh-, J csc u du = log tan -
,

sa sinh-^csch a),
= cosh-^csc ),

6. / sech u du = gd u, I sec udu = gd
-1

&,

8,/^ osh,f, /
- = =cos- 1

-,

P dx ~1 I . .x P;dx 1 ,*
9. / -^ a =-tanh~ -, / -^-j 5 =-tan- 1

,* u a x J x<a a a * a -\-x a a

* Forms 7-12 are preferable to the respective logarithmic expressions

(Art. 19), on account of the close analogy with the circular forms, and also

because they involve functions that are directly tabulated. This advantage

appears more clearly in 13-20.
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r -dx l i
, ,

x r -

10. / a =-COth- 1

-, /* x*aJ x>a a a ** aa
= - cot

-1
-,a v a h- xr a a

/ dx i . . x P dx i

,
= seen

-
, / .

=

r dx i
,

.x r
l2 - / / s i -2

=~csch-
, /J xVa'+x2 a a' d

sec
-

,

dx i x
CSC

Va' +x2 a a
' " x Vx* _ J a

From these fundamental integrals the following may be

derived:

/dx I . , . ax+ b
v== , =,= sinh~ -=

,
a positive. ac> ;

Vax* + 2dx+c Va Vac-b% V ' '

I
,

. dtfT -f- # . .= -=cosh~
, ^positive, ac<b;

Va Vb'ac

I ax -\- b=
,

cos
-

,

V a Vtfac
cos

-1
, a negative.

/dx 1 ax -\- b

**"+2t*+<
=^^ tan "

yz=y ac>
\

i <2^4-^

v <r # Vbac

=
,/Ti-^

coth-
1 ~===, ^ < a

,
^ + b > |/^

2 _ ^ ;Vbac Vbac

Thus> f~^ZT~Zn\
=coth-,

(* 2)1 =coth-,2 coth-^

= tanh- 1

(.5)-tanh-
,

(.3333)=:.5494-.3466^.2028.*

e/ P^+3 =-tanh-(^-2)Jrtanh-o-tanh-X. 5 )

= -
-5494-

(By interpreting these two integrals as areas, show graph-

ically that the first is positive, and the second negative.)

r dx 2 lxb
IK. I . = . tanh- \ / 7,D J (a-x) Vxb Va-b \J a-b y

*For tanh-1 (.5) interpolate between tanh (.54) = .4930, tanh (.56) = .5080

(see tables, pp. 162, 163); and similarly for tanh-1
(.3333)-
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2 Ixb 2
, ,

lxb
or , tan ~

\l -7 ,
or

,
coth-

1

\ / r
;

the real form to be taken. (Put x b = z
2

, and apply 9, 10.)

/c C dx 2 lbx
l6- J (a-^Vb^-^T^^ \/b^'

., 1 / <^ *' 2 . /.*:coth- a / ,
or tan ' l

\ / 1 ;

2
. . lb-

ox Vba
the real form to be taken.

17. yV - a*?dx = -*(* - a2

)*
- -a2

cosh"
1

-.

By means of a reduction-formula this integral is easily made

to depend on 8. It may also be obtained by transforming

the expression into hyperbolic functions by the assumption
x = a cosh #, when the integral takes the form

a* I sinh' udu= I (cosh 2u i)du = -
a*(sinh 28 211)

= J#'(sinh u cosh u u),

which gives 17 on replacing a cosh u by #, and a sinh by

{.r
2 a9

)*.
The geometrical interpretation of the result is

-evident, as it expresses that the area of a rectangular-hyper-

bolic segment AMP is the difference between a triangle OMP
and a sector OAP.

, g. /V -
*)*</* = -*(rt

2 -
x'f + -tf

2 sin"
1

-.

i 9 . yv + ^>^ =^ + **)* + J*
sinh_i J

20. Aec 3

0^/0 =
t
A I + tan2 ^)*^ tan ^

= i tan 0(i + tan
2

0)* + J sinh"
1

(tan 0)

= sec tan + 4 gd"
1

0.

21. y sech
3 </= -J sech tanh u

-j- 4 gd ?/.

Prob. 71. What is the geometrical interpretation of 18, 19?

Prob. 72. Show that / (tf*
9 + 2bx + <r)fe reduces to 17, 18, 19,



138 HYPERBOLIC FUNCTIONS. [Chap. IV.

respectively: when a is- positive, with ac < b*
;
when a is negative ;

and when a is positive, with ac > P.

Prob. 73. Prove / sinh u tanh u du sinh gd u
y

/
u

cosh u coth u du = cosh + log tanh

Prob. 74. Integrate

(J? + 2^ + 5)"^, (* +2X + sY
1
dx, (*" + 2X + $fdx.

Prob. 75. In the parabola y
2 = 4px, if s be the length of arc

measured from the vertex, and the angle which the tangent line

makes with the vertical tangent, prove that the intrinsic equation of

the curve is ds/dcp = 2p sec
3

<p, s = p sec (p tan -f-/gd
-1
0.

Prob. 76. The polar equation of a parabola being r = a sec*\Qy

referred to its focus as pole, express s in terms of 0.

Prob. 77. Find the intrinsic equation of the curvey/a cosh x/a%

and of the curve y/a = log sec x/a.

Prob. 78. Investigate a formula of reduction for / coshn xdx;

also integrate by parts cosh"" 1
.* dx, tanh" 1

.*: dx, (smh~
1

xydx; and

show that the ordinary methods of reduction for / cosw^sinw^^:

can be applied to / coshw x sinhM x dx.

Art. 27. Functions of Complex Numbers.

As vector quantities are of frequent occurence in Mathe-

matical Physics ; and as the numerical measure of a vector

in terms of a standard vector is a complex number of the

form x-\-iy, in which x, y are real, and i stands for V 1; it

becomes necessary in treating of any class of functional oper-
ations to consider the meaning of these operations when per-

formed on such generalized numbers.* The geometrical defini-

tions of cosh//, sinh u, given in Art. 7, being then no longer

applicable, it is necessary to assign to each of the symbols
* The use of vectors in electrical theory is shown in Bedell and Crehore's

Alternating Currents, Chaps, xiv-xx (first published in 1892). The advantage
of introducing the complex measures of such vectors into the differential equa-

tions is shown by Steinmetz, Proc. Elec. Congress, 1893; while the additional

convenience of expressing the solution in hyperbolic functions of these complex
numbers is exemplified by Kennelly, Proc. American Institute Electrical

Engineers, April 1895. (See below, Art. 37.)
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cosh (x -f iy), sinh (x + iy\ a suitable algebraic meaning,
which should be consistent with the known algebraic values of

cosh x, sinh x, and include these values as a particular case

when y = o. The meanings assigned should also, if possible,

be such as to permit the addition-formulas of Art. u to be

made general, with all the consequences that flow from them.

Such definitions are furnished by the algebraic develop-
ments in Art. 16, which are convergent for all values of u, real

or complex. Thus the definitions of cosh (x -J- iy), sinh (x -f- iy)

are to be

cosh (x + iy)
= i + L(x + iy)' + -fx+ iy)' +

2 I 4 '

sinh (x + iy)
= (x+ iy) +

-^(x
+ + ...

(52)

From these series the numerical values of cosh (x + iy\

sinh (x + iy) could be computed to any degree of approxima-

tion, when x and y are given. In general the results will come

out in the complex form*

cosh (x -f- iy)
= a -f- ib,

sinh (x -\- iy)
= c -f- id.

The other functions are defined as in Art. 7, eq. (9).

Prob. 79. Prove from these definitions that, whatever u may be,

cosh ( u) = cosh u
y

sinh
( u) = sinh

,

cosh u = sinh #, -r- sinh # = cosh u.
du du

-7-= cosh mu = m* cosh mu, -r-r sinh w = m* sinh /.+

*It is to be borne in mind that the symbols cosh, sinh, here stand for alge-

braic operators which convert one number into another; or which, in the lan-

guage of vector-analysis, change one vector into another, by stretching and

turning.

f The generalized hyperbolic functions usually present themselves in Mathe-

matical Physics as the solution of the differential equation d'^/du
2 = w2

<,

where <p, m, u are complex numbers, the measures of vector quantities. (See

Art. 37.)
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Art. 28. Addition-Theorems for Complexes.

The addition-theorems for cosh ( -f- v), etc., where u, v are

complex numbers, may be derived as follows. First take u, v

as real numbers, then, by Art. II,

cosh (u -\-v) = cosh u cosh v+ sinh u sinh v\

hence i + i-,( + vf +. ..=(i+u'+ ..
.)(i

+ f+.
.

.)

+
(*
+^ 3 + -

)("+ 3
V+--)

This equation is true when ,
^ are any real numbers. It

must, then, be an algebraic identity. For, compare the terms

of the rth degree in the letters u, v on each side. Those on

the left are \(u-\- v)
r

\
and those on the right, when collected,

form an rth-degree function which is numerically equal to the

former for more than r values of u when v is constant, and for

more than r values of v when u is constant. Hence the terms

of the rth degree on each side are algebraically identical func-

tions of u and v.* Similarly for the terms of any other degree.

Thus the equation above written is an algebraic identity, and

is true for all values of u, v, whether real or complex. Then

writing for each side its symbol, it follows that

cosh (u -f- 7;)
= cosh u cosh v -{- sinh u sinh v\ (53)

and by changing v into v,

cosh (u v)
= cosh u cosh v sinh u sinh v. (54)

In a similar manner is found

sinh (u v) = sinh u cosh v cosh u sinh v. (55)

In particular, for a complex argument,

cosh (x iy) = cosh x cosh iy + sinh x sinh iy,)

(56)
sinh (x /y)

= sinh # cosh 27 cosh ;tr sinh iy. )

* '*
If two rth-degree functions of a single variable be equal for more than r

values of the variable, then they are equal for all values of the variable, and are

algebraically identical."
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Prob. 79. Show, by a similar process of generalization,* that if

sin u, cos u, exp u \ be denned by their developments in powers of

u, then, whatever u may be,

sin (u -f- v)
= sin u cos v + cos u sin

z>,

cos ( -f v) = cos z/ cos z> sin sin v,

exp (z* + v)
= exp z* exp v.

Prob. 80. Prove that the following are identities:

cosh
3
u sinh

2 u =
1,

cosh & -[- sinh = exp ^,

cosh & sinh & = exp ( u) f

cosh u = J[exp a -f exp ( u)],

sinh u = i[exp & exp( )].

Art. 29. Functions of Pure Imaginaries.

In the defining identities

cosh u = I -\ Tu* -I 7u* 4- . . . ,

2! 4!

sinh # = & -| tU* -|
- u

h

-f- . . . ,

3! 5*

put for the pure imaginary ty, then

cosh iy = 1 / + JLy _ . . . = cosjj/, (57)

sinh z> = z> + (z

3 +
-|^

4 + . . .

=
*\y

~
-jj/

+
~j\f

-
.J

=* sin j, (58)

and, by division, tanh z)/
= i tan j/. (59)

* This method of generalization is sometimes called the principle of the
"
permanence of equivalence of forms." It is not, however, strictly speaking, a

"principle," but a method; for, the validity of the generalization has to be

demonstrated, for any particular form, by means of the principle of the alge-

braic identity of polynomials enunciated in the preceding foot-note. (See

Annals of Mathematics, Vol. 6, p. 81.)

f The symbol exp u stands for "exponential function of ," which is identi-

cal with t* when u is real.
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These formulas serve to interchange hyperbolic and circular

functions. The hyperbolic cosine of a pure imaginary is real,

and the hyperbolic sine and tangent are pure imaginaries.

The following table exhibits the variation of sinh u, cosh u,

tanh u, exp u, as u takes a succession of pure imaginary values.

u
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cosh (x / = cos (y =F /.*),

sin (x iy)
= / sinh (j> =F *#),

cos (# * = cosh (y qp *#).

Prob. 84. From the product-series for sin a; derive that for

sinh x :

sin^ = 4-J)(i-^)(i-^5)... l

sinh * =
*(,

+
J)(,

+ -,) (
x +

pp)
. . ..

Art. 30. Functions of * + *> in the Form X+z'F.

By the addition-formulas,

cosh (x + iy)
= cosh ;tr cosh y/ -f- sinh # sinh iy,

sinh (# -f~ iy) smn * cosn iy + cosn *" sinh
iy->

but cosh zj = cos y, sinh
zj/
= * sin y,

hence cosh (x -f- iy) = cosh x cos y -\-i sinh x sin 7,
(60)

sinh (x -f- yO = sinh x cos J+ z cosh # sin y.

Thus if cosh (x+ iy)
= a+ ^, sinh (x -\- iy) c -\- id, then

# = cosh ^r cos y, # = sinh ^ sin y,

(61)= sinh x cos 7, <^ = cosh x sin j.

From these expressions the complex tables at the end of

this chapter have been computed.

Writing cosh z = Z, where z x -f- iy, Z = X-\- iY; let the

complex numbers z, Z be represented on Argand diagrams, in

the usual way, by the points whose coordinates are (x, y),

{X, Y); and let the point z move parallel to the j-axis, on a

given line x = m, then the point Z will describe an ellipse

whose equation, obtained by eliminating y between the equa-

tions X = cosh m cos y, Y= sinh m sin y, is

(cosh my (sinh my
and which, as the parameter m varies, represents a series of

confocal ellipses, the distance between whose foci is unity.
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Similarly, if the point z move parallel to the ^r-axis, on a given

line y = n, the point Z will describe an hyperbola whose equa-

tion, obtained by eliminating the variable x from the equations

X= cosh x cos n, Y = sinh x sin n, is

X* F 2

(cos nf (sin nf

and which, as the parameter n varies, represents a series of

hyperbolas confocal with the former series of ellipses.

These two systems of curves, when accurately drawn at

close intervals on the Z plane, constitute a chart of the hyper-

bolic cosine
;
and the numerical value of cosh {in -f- in) can be

read off at the intersection of the ellipse whose parameter is m
with the hyperbola whose parameter is n*

P^r^Prob.
85. Prove that, in the case of sinh (x -J- iy) %

the above two

systems of curves are each turned through a right angle. Compare
'

the chart of sin (x + iy) 9
and also of cos (x + iy).

, . , . , , ,
. x sinh 2X + i sin ay

Prob. 86. Prove the identity tanh (* + iy)
=

cosh 2jC + cos 2y
Prob. 87. If cosh (x -\- iy),

= a + ib y be written in the
" modulus

and amplitude" form as r(cos + i sin 6),
= r exp W, then

r
2 = c? -f P = cosh

2 x sirfy cos
2

j^ sinh
2

x,

tan = b/a tanh x tan y.

Prob. 88. Find the modulus and amplitude of sinh (x + iy)>

sin (x + iy), exp (x + /.
Prob. 89. The functions sinh u, cosh u have the pure imaginary

period 2in; that is, sinh (u -\- 2tn) = sinh u, cosh ( + 2in) = cosh
;.

also sinh (u+^irt) =i cosh #, cosh (^+ ^/7r)
= / sinh ^, sinh (u-\-in)>

= sinh u, cosh ( + /?r)
= cosh u.

Prob. 90. The functions cosh"V/z, sinh~V/ have multiple values

at intervals of 2in, but each has a unique value (called the principal

value) in which the coefficient of i lies between o and n for the

former, and between \n and + \n for the latter.

* Such a chart is given by Kennelly, Proc. A. I. E. E., April 1895, and is

used by him to obtain the numerical values of cosh {x-\-iy) t sinh {x-\-iy), which

present themselves as the measures of certain vector quantities in the theory of

alternating currents. (See Art. 37.) The chart is constructed for values of x

and of y between o and 1.2; but it is available for all values oiyt on account of

the periodicity of the functions.
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Art. 31. The Catenary.

A flexible inextensible string is suspended from two fixed

points, and takes up a position of equilibrium under the

action of gravity. It is required to find the equation of the

curve in which it hangs.

Let w be the weight of unit length, and s the length of arc

AP measured from the lowest point A ;
then ws is the weight

of the portion AP. This is balanced by the terminal tensions,

T acting in the tangent line at P, and H in the horizontal

tangent. Resolving horizontally and vertically gives

T cos = H, T sin = ws,

in which is the inclination of the tangent at P; hence

ws s

tan0=i=ir=-,

where c is written for H/w, the length whose weight is the

constant horizontal tension
;
therefore

ds I ~7_dy _s ds I s
% dx _ ds

dx c' dx Y ' c
%t

c Vs' + c*'

x . , . s . . x s dy y x- = sinh -1
-, sinh = j-, = cosh -,

c c c c dx v c

which is the required equation of the catenary, referred to an

axis of x drawn at a distance c below A.

The following trigonometric method illustrates the use of

the gudermanian : The " intrinsic equation," s = c tan 0,

gives ds c sec
2

d(t> ;
hence dx, = ds cos 0, = c sec d(p ;

dy,= dss'm 0,= <;sec tan (pd<p; thus x=c gd"
1

<f>,y
= c sec 0;

whence y/c = sec = sec gd x/c = cosh x/c ;
and

s/c
= tan gd x/c = sinh x/c.

Numerical Exercise. A chain whose length is 30 feet is

suspended from two points 20 feet apart in the same hori-

zontal
;

find the parameter c, and the depth of the lowest

point.
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The equation s/c = sinh x/c gives \^/c = sinh lo/c, which,

by putting 10/c = z, may be written i,$z = sinh^. By exam-

ining the intersection of the graphs of/ = siting, y = 1,5,3,

it appears that the root of this equation is z = 1.6, nearly.

To find a closer approximation to the root, write the equation
in the form f(z) = sinh z i.$z = o, then, by the tables,

/(1.60) = 2.3756 2.4000 = .0244,

/(1.62) == 2.4276 2.4300 = .0024,

/[1.64) = 2.4806 2.4600 = + .0206;

whence, by interpolation, it is found that /(1.6221) == o, and

z = 1.622 1, c = 10/z = 6.1649. The ordinate of either of

the fixed points is given by the equation

y/c cosh x/c = cosh 10/c = cosh 1.622 1 = 2.6306,

from tables; hence y = 16.2174, and required depth of the

vertex = y c = 10.052$ feet.*

Prob. 91. In the above numerical problem, find the inclination

of the terminal tangent to the horizon.

Prob. 92. If a perpendicular MN be drawn from the foot of the

ordinate to the tangent at P
y prove that MN is equal to the con-

stant c
y
and that NP is equal to the arc AP. Hence show that

the locus of N is the involute of the catenary, and has the prop-

erty that the length of the tangent, from the point of contact to the

axis of x, is constant. (This is the characteristic property of the

tractory).

Prob. 93. The tension T at any point is equal to the weight of a

portion of the string whose length is equal to the ordinate/ of that

point.

Prob. 94. An arch in the form of an inverted catenary f is 30
feet wide and 10 feet high; show that the length of the arch can be

obtained from the equations cosh z z =1, 25 = sinh z.

* See a similar problem in Chap. I, Art. 7.

f For the theory of this form of arch, see " Arch "
in the Encyclopaedia

Britannica.
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Art. 32. Catenary of Uniform Strength.

If the area of the normal section at any point be made

proportional to the tension at that point, there will then be a

constant tension per unit of area, and the tendency to break

will be the same at all points. To find the equation of the

curve of equilibrium under gravity, consider the equilibrium of

an element PPf whose length is ds, and whose weight is gpaods,

where go is the section at P, and p the uniform density. This

weight is balanced by the difference of the vertical components
of the tensions at Pand P\ hence

d(T sin (p)
= gpoods y

d(T cos 0) = o
;

therefore T cos = H, the tension at the lowest point, and

T= //sec 0. Again, if go be the section at the lowest point,

then by hypothesis go/oo
= T/H sec 0, and the first equation

becomes

Hd(sec sin 0) = gpoo sec <pds,

or cd tan = sec ds,

where c stands for the constant H/gpoo^ the length of string

{of section oo )
whose weight is equal to the tension at the

lowest point ; hence,

ds c sec <pd(p, s/c = gd-'0>

the intrinsic equation of the catenary of uniform strength.

Also dx = ds cos = c d(p, dy = ds sin = c tan d(p ;

hence x c<f>, y = c log sec 0,

and thus the Cartesian equation is

y/c log sec x/c,

in which the axis of x is the tangent at the lowest point.

Prob. 95. Using the same data as in Art. 3 r find the parameter

< and the depth of the lowest point. (The equation x/c = gd s/c

gives 10/V = gd 15A, which, by putting 15/V = s, becomes
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gd z = fz. From the graph it is seen that z is nearly 1.7. If

f(z) = gd z *, then, from the tables of the gudermanian at the

end of this chapter,

/(1.70) = 1. 1780
- 1. 1333 = + .0447,

/( I -75) i-i796 1. 1667 = + .0129,

/(1.80) = 1. 1804 1.2000 = .0196,

whence, by interpolation, z = 1.7698 and c = 8.4755. Again,

y/c = log* sec x/c ;
but x/c = 10/c = 1.1799 ;

and 1.1799 radians

= 67 36' 29"; hence y = 8.4755 X .41914 X 2.3026 = 8.1798, the

required depth.)

Prob. 96. Find the inclination of the terminal tangent.

Prob. 97. Show that the curve has two vertical asymptotes.

Prob. 98. Prove that the law of the tension T, and of the section

go, at a distance s, measured from the lowest point along the

curve, is

T GD
, S= = cosh -;H <z> c

%

and show that in the above numerical example the terminal section

is 2.85 times the minimum section.

Prob. 99. Prove that the radius of curvature is given by
p = c cosh s/c. Also that the weight of the arc s is given byW = H sinh s/c, in which s is measured from the vertex.

Art. 33. The Elastic Catenary.

An elastic string of uniform section and density in its natu-

ral state is suspended from two points. Find its equation of

equilibrium.

Let the element dcr stretch into ds; then, by Hooke's law,

ds = dcr(i -f- A.T), where X is the elastic constant of the string ;

hence the weight of the stretched element ds, = gpcoder, =.

gpoods/{i -{-XT), Accordingly, as before,

d(T sin 0) = gpoods/il + A T),

and T cos = H = gpooc,

hence ^(tan 0) = ds/(i + jj.
sec 0),

in which pi stands for XH, the extension at the lowest point ;



Art. 34.] THE TRACTORY. 149

therefore ds ^(sec
a

-f- M sec3 0)^0,

s/c = tan -f- /*(sec tan + gd"
1

0),

which is the intrinsic equation of the curve, and reduces to that

of the common catenary when }x
= o. The coordinates x, y

may be expressed in terms of the single parameter by put-

ting dx = ds cos =
<r(sec -f- jx sec2

(p)d(p,

dy ds sin =
<:(sec

2 + /* sec
3

0) sin ^0. Whence

x/c gd
_1 + // tan 0, j/c = sec + yu tan 2

0.

These equations are more convenient than the result of

eliminating 0, which is somewhat complicated.

Art. 34. The Tractory.*

To find the equation of the curve which possesses the

property that the length of the tangent from the point of con-

tact to the axis of x is con-

stant.

Let FT, P'T' be two con-

secutive tangents such that

PT=P'T' = c, and let OT
= t\ draw TS perpendicular

to FT'-, then if PP' = ds, it

is evident that ST' differs

from ds by an infinitesimal of a higher order. Let FT make

an angle with OA, the axis of y; then (to the first order of

infinitesimals) PTd<p = TS = TT' cos 0; that is,

i

cd(p = cos cf)dty
t = c gd

-1
0,

x = / c sin 0, = (gd
-1

sin 0), y = c cos 0.

This is a convenient single-parameter form, which gives all

* This curve is used in Schiele's anti-friction pivot (Minchin's Statics, Vol. i,

p. 242) ;
and in the theory of the skew circular arch, the horizontal projection

of the joints being a tractory. (See "Arch," Encyclopaedia Britannica.) The

equation <p = gd t/c furnisher a convenient method of plotting the curve.
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values of x, y as increases from o to \n. The value of s, ex-

pressed in the same form, is found from the relation

ds = ST r = dt sin = c tan cpd(fi, s = c log,, sec 0.

At the point A, = o, ^ = o, ^ = o, /=o, /=<:. The
Cartesian equation, obtained by eliminating 0, is

= gd
-1

(cos
-1

-J
sin (cos

-1 -\ = cosh
-1

4 /i -.

If & be put for
//*:,

and be taken as independent variable,.

= gd u, x/c = u tanh u, y/c =. sech #, s/c = log cosh #.

Prob. 100. Given /= 2C
t
show that 0= 75 35', s = 1.3249^,

jy
= .265SY, .* = 1.0360*:. At what point is t = cl

Prob. 101. Show that the evolute of the tractory is the catenary.

(See Prob. 92.)

Prob. 102. Find the radius of curvature of the tractory in terms

of
;
and derive the intrinsic equation of the involute.

Art. 35. The Loxodrome.

On the surface of a sphere a curve starts from the equator

in a given direction and cuts all the meridians at the same

angle. To find its equation

in latitude-and-longitude co-

ordinates :

Let the loxodrome cross

two consecutive meridians

AM, AN in the points P% Q;.

let PR be a parallel of lati-

tude
;

let OM x, MP=y
MN = dx, RQ = dy, all in radian measure

;
and let the angle

MOP=RPQ = a; then

tan a = RQ/PR, but PR = MN cos MP*

hence dx tan a = dy sec y, and x tan a = gd
_I

y, there being^

no integration-constant since y vanishes with x; thus the re-

quired equation is

y = gd (x tan a).

*
Jones, Trigonometry (Ithaca, 1890), p. 185.

J/jV
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To find the length of the arc OP: Integrate the equation

ds = dy esc a, whence s = y esc a.

To illustrate numerically, suppose a ship sails northeast,

from a point on the equator, until her difference of longitude is

45, find her latitude and distance :

Here tan a = I, andj/ = gd x = gd \n = gd (.7854}= .7152

radians: s =y V2 = 1.0114 radii. The latitude in degrees is

40.980.

If the ship set out from latitude yl9
the formula must be

modified as follows : Integrating the above differential equa-
tion between the limits (^,, j/,) and (x yt) gives

(*.
- O tan a = gd ">2

- gd">iJ

hence gd~y7
= gd

-1
^, -|- <X *i) tan a, from which the final

latitude can be found when the initial latitude and the differ-

ence of longitude are given. The distance sailed is equal to

(fi fi) csc a radii, a radius being 60 X i8o/7r nautical miles.

Mercator's Chart. In this projection the meridians are

parallel straight lines, and the loxodrome becomes the straight

line y' = x tan a, hence the relations between the coordinates of

corresponding points on the plane and sphere are x f = x
y

y' = gd
~ 1

y. Thus the latitude y is magnified into gd
" 1

y, which

is tabulated under the name of " meridional part for latitude

y
"

;
the values of y and of y' being given in minutes. A chart

constructed accurately from the tables can be used to furnish

graphical solutions of problems like the one proposed above.

Prob. 103. Find the distance on a rhumb line between the points

(30 N, 20 E) and (30 S, 40 E).

Art. 36. Combined Flexure and Tension.

A beam that is built-in at one end carries a load P at the

other, and is also subjected to a horizontal tensile force Q ap-

plied at the same point; to find the equation of the curve

assumed by its neutral surface : Let x, y be any point of the
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elastic curve, referred to the free end as origin, then the bend-

ing moment for this point is Qy Px. Hence, with the usual

notation of the theory of flexure,*

P , Q= ?i*{ v mx). m =
dx*

w dx l Q EI

which, on putting/ mx = u, zxAd
%

y/dx
% = d 2

n/dx
2

,
becomes

whence u = A cosh nx -f- B sinh nx,

that is, y = mx -f- A cosh nx -j- B sinh nx.

The arbitrary constants A, B are to be determined by the

terminal conditions. At the free end x o
y y=o; hence A

must be zero, and

y = mx+ B sinh nx,

_f- = m + nB cosh nx
;

dx

but at the fixed end, x = I, and dy/dx = o, hence

B = m/n cosh nl,

and accordingly

;;z sinh nx
y = w^r

;

~.

cosh nl

To obtain the deflection of the loaded end, find the ordinate

of the fixed end by putting x = /, giving

deflection = mil tanh/z/).v n '

Prob. 104. Compute the deflection of a cast-iron beam, 2X2
inches section, and 6 feet span, built-in at one end and carrying

a load of 100 pounds at the other end, the beam being subjected

to a horizontal tension of 8000 pounds. [In this case / = 4/3,

E = 15 X io
6

, Q = 8000, P = 100
; hence n = 1/50, m = 1/80,

deflection = ^(72 50 tanh 1.44) ^5(72
-

44-69) = -34* inches.]

* Merriman, Mechanics of Materials (New York, 1895), pp. 70-77, 267-269,
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Prob. 105. If the load be uniformly distributed over the beam,

say w per linear unit, prove that the differential equation is

EI
~ci?

= @y ~ ^wx^ or
fa

= n*(y
- mx*)>

and that the solution isy=A cosh nx -\- B sm\\nx -\-mx
l

-\ ^-.
ti

Show also how to determine the arbitrary constants.

Art. 37. Alternating Currents.*

In the general problem treated the cable or wire is regarded
as having resistance, distributed capacity, self-induction, and

leakage ; although some of these may be zero in special

cases. The line will also be considered to feed into a receiver

circuit of any description ;
and the general solution will in-

clude the particular cases in which the receiving end is either

grounded or insulated. The electromotive force may, without

loss of generality, be taken as a simple harmonic function of

the time, because any periodic function can be expressed in a

Fourier series of simple harmonics.f The E.M.F. and the

current, which may differ in phase by any angle, will be

supposed to have given values at the terminals of the receiver

circuit ; and the problem then is to determine the E.M.F.

and current that must be kept up at the generator terminals
;

and also to express the values of these quantities at any inter-

mediate point, distant x from the receiving end
;
the four

line-constants being supposed known, viz.:

R = resistance, in ohms per mile,

L = coefficient of self-induction, in henrys per mile,

C = capacity, in farads per mile,

G coefficient of leakage, in mhos per mile4

It is shown in standard works that if any simple harmonic

* See references in foot-note Art. 27. \ Chapter V, Art. 8.

\ Kennelly denotes these constants by r, /, c, g. Steinmetz writes j for

coL, K for ooC, for G, and he uses C for current.

Thomson and Tait. Natural Philosophy, Vol I. p. 40; Rayleigh, Theory

of Sound, Vol. I. p. 20; Bedell and Crehore, Alternating Currents, p. 214.
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function a sin (pot -\- 6) be represented by a vector of length
a and angle Q, then two simple harmonics of the same period

27t/gd, but having different values of the phase-angle 0, can be

combined by adding their representative vectors. Now the

E.M.F. and the current at any point of the circuit, distant x
from the receiving end, are of the form

e = e
x
sin (oot -j- #), i = i

x
sin (oot -j- 6'\ (64)

in which the maximum values <? tv and the phase-angles 0, 0\

are all functions of x. These simple harmonics will be repre-

sented by the vectors ejd, ijd' ; whose numerical measures

are the complexes e
x (cos 6 -\-js\n 0)*, i

x (cos 0' -\-j sin 0'),

which will be denoted by e, i. The relations between e and l

may be obtained from the ordinary equations f

di
, ^de de _. . di ,^ .

for, since de/dt = ooe
x
cos (oot -f- 0)

= ooe
x
sin (Got -{- -\- ^n) >

then dfe/dfr will be represented by the vector Goe
1 /0 -f- \n ;

and

di/dx by the sum of the two vectors Ge
x /0, Cooe

l /0 + \n ;

whose numerical measures are the complexes 6V, jooCe-\ and

similarly for de/dx in the second equation ;
thus the relations

between the complexes e, 1 are

5 = (<?+>cy, = (*+>)* (66)t

*In electrical theory the symbol j is used, instead of i, for |/ 1.

f Bedell and Crehore, Alternating Currents, p. 181. The sign of dx is

changed, because x is measured from the receiving end. The coefficient of

leakage, G, is usually taken zero, but is here retained for generality and sym-

metry.

% These relations have the advantage of not involving the time. Steinmetz

derives them from first principles without using the variable /. For instance,

he regards R -f joaL as a generalized resistance-coefficient, which, when applied

to i, gives an E.M.F., part of which is in phase with i, and part in quadrature

with i. Kennelly calls R + JgoL the conductor impedance; and G -f- JaoC the

dielectric admittance; the reciprocal of which is the dielectric impedance.
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Differentiating and substituting give

(67}

and thus ^~, I are similar functions of x, to be distinguished only

by their terminal values.

It is now convenient to define two constants mi^ml by the

equations*

w> =
(R +jgdL)(G +jooC) y m? = (R +JgoL)/(G +J&Q ; (68)

and the differential equations may then be written

the solutions of which are f

/ = A cosh ?#;tr -|- B sinh ;/z.r, F = A' cosh ;;z;tr -f~ i?' sinh mxy

wherein only two of the four constants are arbitrary ;
for sub-

stituting in either of the equations (66), and equating coeffi-

cients, give

(G+jgdC)A = mB\ (G+ja>C)B = mA\

whence B' = A/mv A' = B/m x
.

Next let the assigned terminal values of e, i, at the receiver,.

be denoted by E, J; then puttings = o gives E = A, I A\.

whence B = mj%
B' = E/m l ;

and thus the general solution is

e = E cosh mx + mj sinh mx,
|

i _ (7o>
i = I cosh mx -f- ~E sinh mx.

* The complex constants m, ;i , are written z, y by Kennelly; and the-

variable length x is written Z 2 . Steinmetz writes v for m.

f See Art. 14, Probs. 28-30; and Art. 27, foot-note.



156 HYPERBOLIC FUNCTIONS. [Chap. IV.

If desired, these expressions could be thrown into the ordi-

nary complex form X-\-jY, X' -\-jY', by putting for the let-

ters their complex values, and applying the addition-theorems

for the hyperbolic sine and cosine. The quantities X, Y, X',

Y' would then be expressed as functions of x
;
and the repre

sentative vectors of e, i, would be e
x /0, i

% /#', where e'=X 2

-|- F2

,

#,
= X" + Y'\ tan 6 = Y/X, tanl7 =Y'/X.
For purposes of numerical computation, however, the for-

mulas (70) are the most convenient, when either a chart,* or a

table,f of cosh u> sinh u, is available, for complex values of u.

Prob. 106. \ Given the four line-constants: R = 2 ohms per mile,

L = 20 millihenrys per mile, C= 1/2 microfarad per mile, = 0;

and given go, the angular velocity of E.M.F. to be 2000 radians

per second; then

ooL = 40 ohms, conductor reactance per mile;

R -\-jooL
= 2 + 40/ ohms, conductor impedance per mile;

00C = .001 mho, dielectric susceptance per mile;

G + jooC = .001/' mho, dielectric admittance per mile;

{G-\-jooC)~
l = 1 000;' ohms, dielectric impedance per mile;

m 1 = [R -\-jooL){G -\-jooC) .04 -f- .0027, which is the

measure of .04005 /177." 8'; therefore

m = measure of .2001 /88 34' = .0050 + .2000/, an ab-

stract coefficient per mile, of dimensions [length]
-1

,

mm
l

= m/(G + jooC) = 200 5/' ohms per mile.

Next let the assigned terminals conditions at the receiver be:

/= o (line insulated) ;
and E = 1000 volts, whose phase may be taken

as the standard (or zero) phase; then at any distance x, by (70),

e = E cosh mxy
1 = - sinn mx ym

x

in which mx is an abstract complex.

Suppose it is required to find the E.M.F. and current that must

be kept up at a generator 100 miles away; then

* Art. 30, foot-note. \ See Table II.

% The data for this example are taken from Kennelly's article.
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e= iooo cosh (.5 + 20/), 1 = 200(40 /)-' sinh (.5 + 20/'),

but, by Prob. 89, cosh (.5 + 20/) = cosh (.5 + 20/ 67tj)

= cosh (.5 + 1.15/)
= .4600 + .475/

obtained from Table II, by interpolation between cosh (.5 + 1.17)
and cosh (.5 + 1.2/); hence

e 460 + 475/'
= ^(cos 6 +j sin 6),

where log tan 6 = log 475 log 460 = .0139, = 45 55', and

*,
= 460 sec # = 625.9 volts, the required E.M.F.

Similarly sinh (.5 -+- 207) = sinh (.5 -f- 1.157)
= .2126 + 1.02807V

and hence

l = --(lOO +7)(.2I26 4- I.O287) ~2 (4046 + 20607)

=
1,(008 6/' 4-7 sin 6'),

where log tan 0' = 9.70684, #'= 26 59', ^= 4046 sec #'/i6oi = 2.77

amperes, the phase and magnitude of required current.

Next let it be required to find e at x = 8; then

e = 1000 cosh (.04 -f- 1.67)
= 10007 smn C4 + '3j')f

by subtracting %7tj\ and applying Prob. 89. Interpolation be-

tween sinh (o + 07) and sinh (o + > lj) gives

sinh (o -|- .037) = 00000 -J- .029957.

Similarly sinh (.1 -f - ZJ) I ooo4 -j- .030047'.

Interpolation between the last two gives

sinh (.04 + 'OS J) = .04002 + .029997.

Hence/ =7(40.02 +29.997')= 29.994-40.027 =^(cos 0-\-jsin #),

where

log tan 6 = .12530, 6 = 126 51', <?,
= 29.99 sec I2^ 5 1

' ==
5 -01

volts.

Again, let it be required to find e at x = 16; here

e == 1000 cosh (.08 4" 3*27)
= 1000 cosh (.08 4- .067),

but cosh (o 4- -067) = .9970 4" j\ cosh (.1 4~ 6/) = 1.0020 4- .0067;

hence cosh (.08 4" 06J)= 1.0010 -f-00487,

and e 10014-4.87 = <?,(cos 0+j sin #),

where 6 = 180 17', ^,
= 1001 volts. Thus at a distance of about

16 miles the E.M.F. is the same as at the receiver, but in opposite
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phase. Since e is proportional to cosh (.005 4- .2j)x, the value of

x for which the phase is exactly 180 is n/,2 15.7. Similarly
the phase of the E.M.F. at x = 7.85 is 90 . There is agreement
in phase at any two points whose distance apart is 31.4 miles.

In conclusion take the more general terminal conditions in

which the line feeds into a receiver circuit, and suppose the current

is to be kept at 50 amperes, in a phase 40 in advance of the elec-

tromotive force; then/ 5o(cos 40 +/ sin 40 )
= 38,30 + 32.14/;

and substituting the constants in (70) gives

e 1000 cosh (.005 -j- .y)x + (7821 -j- 62367) sinh (.005 -f- .2j')x

= 460+475/ -4748+9366/= -4288+984iy=^(cos 0+/sin 0),

where 6= 113 33', e
l

= 10730 volts, the E.M.F. at sending end.

This is 17 times what was required when the other end was insulated.

Prob. 107. If the receiving end be grounded, that is if =0;
and if a current of 10 amperes be caused to flow to ground; find

the E.M.F. and current to be kept up at the generator. Also

compute these quantities, and their phases, at the distances 7.85,

15.7, 31.42, 94.25 miles from the receiver.

Prob. 108. If self-induction and capacity be zero, and the

receiving end be insulated, show that the graph of the electromo-

tive force is a catenary.

Prob. 109. Neglecting leakage and capacity, prove that the

solution of equations (66) is 1 = /, e = E + (R + jooL)Ix.

Prob. no. If x be measured from the sending end, show how

equations (65), (66) are to be modified; and prove that

_ 1 _
= E

a
cosh mx m

x
I

Q
sinh mx, 1 = 7 cosh mx ~E sinh mxt

where E
%
I refer to the sending end.

Art. 38. Miscellaneous Applications.

1. The length of the arc of the logarithmic curve y ax is

y=J/(cosh+logtanhJ), in which M= i/loga, sinh w =y/M.
2. The length of arc of the spiral of Archimedes r = aO is

s = tf(sinh 2u +- 2u), where sinh u = 0.

3. In the hyperbola x^/a* y
1

/& = 1 the radius of curva-

ture is p=(a* sinh
2

u-{-d>* cosh 2

iCf/ab', in which u is the,

measure of the sector A OP, i.e. cosh u = x/a, sinh u y/b.

4. In an oblate spheroid, the superficial area of the zone
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between the equator and a parallel plane at a distance y is

5 = 7r^
2

(sinh 2u + 2ii)/2e, wherein b is the axial radius, e the

eccentricity, n ey/p, and/ parameter of generating ellipse.

5. The length of the arc of the parabola f 2px, measured

from the vertex of the curve, is / = i/(sinh 2u-\-2u), in which

sinh u = y/p tan 0, where is the inclination of the termi-

nal tangent to the initial one.

6. The centre of gravity of this arc is given by

llx =/a

(cosh
8 u

i), 64/y p* (sinh 411 411) ;

and the surface of a paraboloid of revolution is 5= 2n yl.

7. The moment of inertia of the same arc about its ter*

minal ordinate is I= pi\_x/(x 2x) -{- ^Tp
3

N], where pi is

the mass of unit length, and

JV= n \ sinh 2u \ sinh 4 -\- -^ sinh 6u.

8. The centre of gravity of the arc of a catenary measured

from the lowest point is given by

4fy= <r
2

(
sinh 2u + 2u), fx = c\u sinh u cosh u + 1),

in which u = x/c ;
and the moment of inertia of this arc about

its terminal abscissa is

/ = /^
3

(tV sinh 3?/ + sinh u 11 cosh
11).

9. Applications to the vibrations of bars are given in Ray-

leigh, Theory of Sound, Vol. I, art. 170: to the torsion of

prisms in Love, Elasticity, pp. 166-74; to the flow of heat

and electricity in Byerly, Fourier Series, pp. 75-81 ;
to wave

motion in fluids in Rayleigh, Vol. I, Appendix, p. 477, and in

Bassett, Hydrodynamics, arts. 120, 384; to the theory of

potential in Byerry p. 135, and in Maxwell, Electricity, arts.

172-4; to Non-Euclidian geometry and many other subjects

in Gunther, Hyperbelfunktionen, Chaps. V and VI. Several

numerical examples are worked out in Laisant, Essai sur les

fonctions hyperboliques.
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Art. 39. Explanation of Tables.

In Table I the numerical values of the hyperbolic functions

sinh u
y
cosh u

y
tanh u are tabulated for values of u increasing

from o to 4 at intervals of .02. When u exceeds 4, Table IV

may be used.

Table II gives hyperbolic functions of complex arguments,

in which

cosh (x iy)
= a ib> sinh (x iy)

= c zh id,

and the values of a, b, c, d are tabulated for values of x

and of y ranging separately from o to 1.5 at intervals of .1.

When interpolation is necessary it may be performed in three

stages. For example, to find cosh (.82 -f- 1.342') : First find

cosh (.82-]- i-30 by keeping jj/
at 1.3 and interpolating between

the entries under x = .8 and* = .9 ;
next find cosh (.82 + i-4*)>

by keeping y at 1.4 and interpolating between the entries under

x = .8 and x = .9, as before; then by interpolation between

cosh (.82 + 1.31) and cosh (.82 + 1.42) find cosh( .82 -f- 1.342),

in which x is kept at .82. The table is available for all values

of y, however great, by means of the formulas

sinh (x -\- 2in
)
= sinh^r, cosh (x-\-2i7t) = cosh x, etc.

It does not apply when x is greater than 1.5, but this case sel-

dom occurs in practice. This table can also be used as a com-

plex table of circular functions, for

cos (y ix) = a =F tb, sin (y ix)
= d -.ic ;

and, moreover, the exponential function is given by

exp (
x iy)

= ac i(b d),

in which the signs of c and afare to be taken the same as the

sign of x, and the sign of i on the right is to be the product of

the signs of x and of i on the left.

Table III gives the values of v = gd u, and of the guder-

manian angle 0= 180 v/ir, as u changes from o to I at inter-
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vals of .02, from I to 2 at intervals of .05, and from 2 to 4 at

intervals of .1.

In Table IV are given the values of gd u, log sinh u, log

cosh u, as u increases from 4 to 6 at intervals of .1, from 6 to

7 at intervals of .2, and from 7 to 9 at intervals of .5.

In the rare cases in which more extensive tables are neces-

sary, reference may be made to the tables* of Gudermann,

Glaisher, and Geipel and Kilgour. In the first the Guderman-

ian angle (written k) is taken as the independent variable, and

increases from o to 100 grades at intervals of .01, the corre-

sponding value of u (written Lk) being tabulated. In the usual

case, in which the table is entered with the value of u, it gives

by interpolation the value of the gudermanian angle, whose

circular functions would then give the hyperbolic functions

of u. When u is large, this angle is so nearly right that inter-

polation is not reliable. To remedy this inconvenience Gu-

dermann's second table gives directly log sinh u, log cosh u>

log tanh u, to nine figures, for values of u varying by .001 from

2 to 5, and by .01 from 5 to 12.

Glaisher has tabulated the values of e* and e~ x
,
to nine sig-

nificant figures, as x varies by .001 from o to .1, by .01 from o

to 2, by .1 from o to 10, and by I from o to 500. From these

the values of cosh x, sinh x are easily obtained.

Geipel and Kilgour's handbook gives the values of cosh;tr,

sinh x, to seven figures, as x varies by .01 from o to 4.

There are also extensive tables by Forti, Gronau, Vassal,

Callet, and Hoiiel
;
and there are four-place tables in Byerly's

Fourier Series, and in Wheeler's Trigonometry.

In the following tables a dash over a final digit indicates

that the number has been increased.

Gudermann in Crelle's Journal, vols. 6-9, 1831-2 (published separately

under the title Theorie der hyperbolischen Functionen, Berlin, 1833). Glaisher

in Cambridge Phil. Trans., vol. 13, 1881. Geipel and Kilgour's Electrical Hand-

book.
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Table I. Hyperbolic Functions.

[Chap. IV.

u.
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Table I. Hyperbolic Functions.

u.
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Table II. Values of cosh (x + iy) and sinh (x -4- iy).
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Table II. Values of cosh (x -f iy) and sinh (x -f iy).

165

a
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Table II. Values of cosh (x + iy) and sinh (x -f iy).

y
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Table II. Values of cosh (x -f iy) and sinh (x -\--iy.)
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Table III.

u
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Chapter V.

HARMONIC FUNCTIONS.

By William E. Byerly,

Professor of Mathematics in Harvard University,

Art. 1. History and Description.

What is known as the Harmonic Analysis owed its origin

and development to the study of concrete problems in various

branches of Mathematical Physics, which however all involved

the treatment of partial differential equations of the same

general form.

The use of Trigonometric Series was first suggested by
Daniel Bernouilli in 1753 in his researches on the musical

vibrations of stretched elastic strings, although Bessel's Func-

tions had been already (1732) employed by him and by Euler

in dealing with the vibrations of a heavy string suspended from

one end; and Zonal and Spherical Harmonics were introduced

by Legendre and Laplace in 1782 in dealing with the attrac-

tion of solids of revolution.

The analysis was greatly advanced by Fourier in 1812-1824

in his remarkable work on the Conduction of Heat, and im-

portant additions have been made by Lame (1839) anc* by a

host of modern investigators.

The differential equations treated in the problems which

have just been enumerated are
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for the transverse vibrations of a musical string ;

dt \ ox oxl
v 7

for small transverse vibrations of a uniform heavy string sus-

pended from one end
;

ox*
"*"

ay &*
a
_ u>

which is Laplace's equation ;
and

for the conduction of heat in a homogeneous solid.

Of these Laplace's equation (3), and (4) of which (3) is a

special case, are by far the most important, and we shall con-

cern ourselves mainly with them in this chapter. As to their

interest to engineers and physicists we quote from an article

in The Electrician of Jan. 26, 1894, by Professor John Perry:

" There is a well-known partial differential equation, which is

the same in problems on heat-conduction, motion of fluids, the

establishment of electrostatic or electromagnetic potential, certain

motions of viscous fluid, certain kinds of strain and stress, currents

in a conductor, vibrations of elastic solids, vibrations of flexible

strings or elastic membranes, and innumerable other phenomena.
The equation has always to be solved subject to certain boundary
or limiting conditions, sometimes as to space and time, sometimes

as to space alone, and we know that if we obtain any solution of a

particular problem, then that is the true and only solution. Further-'

more, if a solution, say, of a heat-conduction problem is obtained

by any person, that answer is at once applicable to analogous prob-

lems in all the other departments of physics. Thus, if Lord Kel-

vin draws for us the lines of flow in a simple vortex, he has drawn

for us the lines of magnetic force about a circular current: if

Lord Rayleigh calculates for us the resistance of the mouth of an

organ-pipe, he has also determined the end effect of a bar of iron

which is magnetized; when Mr. Oliver Heaviside shows his match-
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less skill and familiarity with Bessel's functions in solving electro-

magnetic problems, he is solving problems in heat-conductivity 01

the strains in prismatic shafts. How difficult it is to express exactly

th-e distribution of strain in a twisted square shaft, for example, and

yet how easy it is to understand thoroughly when one knows the

perfect-fluid analogy! How easy, again, it is to imagine the electric

current density everywhere in a conductor when transmitting alter-

nating currents when we know Mr. Heaviside's viscous-fluid analogy,

or even the heat-conduction analogy!
" Much has been written about the correlation of the physical

sciences; but when we observe how a young man who has worked

almost altogether at heat problems suddenly shows himself ac-

quainted with the most difficult investigations in other departments

of physics, we may say that the true correlation of the physical

sciences lies in the equation of continuity

,/diu av av\,~ a W^ay +
aW*

In the Theory of the Potential Function in the Attraction

of Gravitation, and in Electrostatics and Electrodynamics,*

Vxn Laplace's equation (3) is the value of the Potential Func-

tion, at any external point {x, y, z\ due to any distribution of

matter or of electricity; in the theory of the Conduction of

Heat in a homogeneous solid f V is the temperature at any

point in the solid after the stationary temperatures have been

established, and in the theory of the irrotational flow of an

incompressible fluid % V is the Velocity Potential Function

and (3) is known as the equation of continuity.

If we use spherical coordinates, (3) takes the form

xVZ\rV), 1
9
(
si"49

1

1 9
;n_ c .

rrt

?L
r-
3? '"iinT

-
d

^
sin' 0B<p' J

' W
* See Peirce's Newtonian Potential Function. Boston.

f See Fourier's Analytic Theory of Heat. London and New York, 1878
;

or Riemann's Partielle Differentialgleichungen. Brunswick.

% See Lamb's Hydrodynamics. London and New York, 1895.
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and if we use cylindrical coordinates, the form

* V r\^\^Z^Z=o. . (6)

In the theory of the Conduction of Heat in a homogene-
ous solid,* u in equation (4) is the temperature of any point

{x, y, 2) of the solid at any time t, and a 1
is a constant deter-

mined by experiment and depending on the conductivity and

the thermal capacity of the solid.

Art. 2. Homogeneous Linear Differential Equations.

The general solution of a differential equation is the equa-

tion expressing the most general relation between the primi-

tive variables which is consistent with the given differential

equation and which does not involve differentials or derivatives.

A general solution will always contain arbitrary (i.e., undeter-

mined) constants or arbitrary functions.

A particular solution of a differential equation is a relation

between the primitive variables which is consistent with the

given differential equation, but which is less general than the

general solution, although included in it.

Theoretically, every particular solution can be obtained

from the general solution by substituting in the general solu-

tion particular values for the arbitrary constants or particular

functions for the arbitrary functions
;
but in practice it is often

easy to obtain particular solutions directly from the differential

equation when it would be difficult or impossible to obtain the

general solution.

(a) If a problem requiring for its solution the solving of a

differential equation is determinate, there must always be given
in addition to the differential equation enough outside condi-

tions for the determination of all the arbitrary constants or

arbitrary functions that enter into the general solution of the

equation ;
and in dealing with such a problem, if the differen-

tial equation can be readily solved the natural method of pro-
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cedure is to obtain its general solution, and then to determine

the constants or functions by the aid of the given conditions.

It often happens, however, that the general solution of the

differential equation in question cannot be obtained, and then,,

since the problem, if determinate, will be solved, if by any
means a solution of the equation can be found which will also

satisfy the given outside conditions, it is worth while to try to

get particular solutions and so to combine them as to form a

result which shall satisfy the given conditicns without ceasing

to satisfy the differential equation.

(J?)
A differential equation is linear when it would be of the

first degree if the dependent variable and all its derivatives

were regarded as algebraic unknown quantities. If it is linear

and contains no term which does not involve the dependent
variable or one of its derivatives, it is said to be linear and

homogeneous.

All the differential equations given in Art. I are linear and

homogeneous.

(c) If a value of the dependent variable has been found

which satisfies a given homogeneous, linear, differential equa-

tion, the product formed by multiplying this value by any
constant will also be a value of the dependent variable which

will satisfy the equation.

For if all the terms of the given equation are transposed

to the first member, the substitution of the first-named value

must reduce that member to zero
; substituting the second

value is equivalent to multiplying each term of the result of

the first substitution by the same constant factor, which there-

fore may be taken out as a factor of the whole first member.

The remaining factor being zero, the product is zero and the

equation is satisfied.

(d) If several values of the dependent variable have been

found each of which satisfies the given differential equation,

their sum will satisfy the equation ;
for if the sum of the values

in question is substituted in the equation, each term of the sum
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will give rise to a set of terms which must be equal to zero, and

therefore the sum of these sets must be zero.

(e) It is generally possible to get by some simple device

particular solutions of such differential equations as those we

have collected in Art. I. The object of this chapter is to find

methods of so combining these particular solutions as to satisfy

any given conditions, which are consistent with the nature of

the problem in question.

This often requires us to be able to develop any given func-

tion of the variables which enter into the expression of these

conditions in terms of normal forms suited to the problem with

which we happen to be dealing, and suggested by the form of

particular solution that we are able to obtain for the differential

equation.

These normal forms are frequently sines and cosines, but

they are often much more complicated functions known as

Legendre's Coefficients, or Zonal Harmonics; Laplace's .Coef-

ficients, or Spherical Harmonics; Bessel's Functions, or Cylin-

drical Harmonics; Lame's Functions, or Ellipsoidal Har-

monics; etc.

Art. 3. Problem in Trigonometric Series.

As an illustration let us consider the following problem :

A large iron plate n centimeters thick is heated throughout

to a uniform temperature of ioo degrees centigrade; its faces

are then suddenly cooled to the temperature zero and are kept

at that temperature for 5 seconds. What will be the tempera-

ture of a point in the middle of the plate at the end of that

time? Given a* =0.185 in C.G.S. units.

Take the origin of coordinates in one face of the plate

and the axis of X perpendicular to that face, and let u be the

temperature of any point in the plate t seconds after the cool-

ing begins.

We shall suppose the flow of heat to be directly across the

plate so that at any given time all points in any plane parallel
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to the faces of the plate will have the same temperature.

Then it depends upon a single space-coordinate x
;

- = o and

=0, and (4), Art. I, reduces to

^=^. (1)

Obviously, n = ioo when t o, (2)

u = o when ^ = o, (3)

and u = o when .r = ?r
; (4)

and we need to find a solution of (1) which satisfies the con-

ditions (2), (3), and (4).

We shall begin by getting a particular solution of (1), and

we shall use a device which always succeeds when the equa-

tion is linear and homogeneous and has constant coefficients.

Assume* u = eP
x +

v', where fi and y are constants; substi-

tute in (1) and divide through by e^x+yi and we get y = #2

/f ;

and if this condition is satisfied, u = eP
x +y* is a solution of (1).

u = efi*+**fi*t is then a solution of (1) no matter what the

value of /?.

We can modify the form of this solution with advantage.
Let fi

=
fxi,\ then u = e^ a^ne^xi is a solution of (i\ as is also

11 = e~ ^^'e~"'**'K

By (d), Art. 2,

u = e-+** 1 = e~ aW cos px (5)

is a solution, as is also

u = *- "m* f. / = *-V2<
S in ^ .

(6)

and /* is entirely arbitrary.

* This assumption must be regarded as purely tentative. It must be tested

by substituting in the equation, and is justified if it leads to a solution,

f The letter i will be used to represent 4/ 1.



176 HARMONIC FUNCTIONS. [CHAP. V.

By giving different values to p. we get different particular

solutions of (i) ;
let us try to so combine them as to satisfy our

conditions while continuing to satisfy equation (i).

u = e~ a^n sin px is zero when x = o for all values of
jjl ;

it

is zero when x = n if yu is a whole number. If, then, we write

u equal to a sum of terms of the form Ae~ aimn
sin mx, where

m is an integer, we shall have a solution of (i) (see {d), Art. 2)

which satisfies (3) and (4).

Let this solution be

u =A
1
e~ ait sin x + A,e~

4ait sin 2x + A
3
e~ 9an

sin 3*+ ..., (7)

A lt A%i A tf . . . being undetermined constants.

When t = o, (7) reduces to

u = A
x
sin ;r + ^s sm 2;r + ^3 sin $x+ . (8)

If now it is possible to develop unity into a series of the

form (8) we have only to substitute the coefficients of that

series each multiplied by 100 for A l% A^ y
A

3
. . . in (7) to have

a solution satisfying (1) and all the equations of condition (2)>

(3), and (4).

We shall prove later (see Art. 6) that

I = sin x + " sin ^x -f-
~ sin %x + .

for all values of x between o and n. Hence our solution is

u = ^[f-^ sin x + -e~9aH sin 3* +V 25"2 ' sin 5*+ . . .

|

(9)

To get the answer of the numerical problem we have only

to compute the value of u when x = and / = 5 seconds. As

there is no object in going beyond tenths of a degree, four-

place tables will more than suffice, and no term of (9) beyond
71

the first will affect the result. Since sin - = I, we have to
2

compute the numerical value of
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400
7t

e~an where a3 = 0.185 and t = 5.

log a7 = 9.2672 10 log 400 = 2.6021

log / = 0.6990 colog n 9.5059 10

log eft = 9.9662 10 colog e** = 9.5982 10

log log e Q.6378 10 . ,& & y j/
i g ^ =1.7062

log log ^
9' = 9.6040 10

log f" = 0.4018 u = 50- 8.

If the breadth of the plate had been c centimeters instead

of n centimeters it is easy to see that we should have needed

the development of unity in a series of the form

. . nx
, A 2nx

,

. . %nx
A

x
sin + A, sin + A, sin + ....

Prob. 1. An iron slab 50 centimeters thick is heated to the tem-

perature 100 degrees Centigrade throughout. The faces are then sud-

denly cooled to zero degrees, and are kept at that temperature for

10 minutes. Find the temperature of a point in the middle of the

slab, and of a point 10 centimeters from a face at the end of that

time. Assume that

4/ . ttx . 1 . \7tx
,

1 . K ?rx
, \ r

1 = - sin r- - sin h ~ sin r from x = o to x = c.

Ans. 84.o; 49.4.

Art. 4. Problem in Zonal Harmonics.

As a second example let us consider the following problem :

Two equal thin hemispherical shells of radius unity placed

together to form a spherical surface are separated by a thin

layer of air. A charge of statical electricity is placed upon
one hemisphere and the other hemisphere is connected with

the ground, the first hemisphere is then found to be at poten-

tial 1, the other hemisphere being of course at potential zero.

At what potential is any point in the "
field of force" due to

the charge?

We shall use spherical coordinates and shall let Fbe the

potential required. Then Fmust satisfy equation (5), Art. K
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But since from the symmetry of the problem V is obviously

independent of 0, if we take the diameter perpendicular to the

plane separating the two conductors as our polar axis,
- is

zero, and our equation reduces to

rftrV) .
9
(
Si"4) _

(l)
dr"

"^ sin 6 d V

Fis given on the surface of our sphere, hence

V=/(0) when r = I, (2)

where /(d) = 1 if o < 6 < -, and f(6) = O if - < 6 < ir.

Equation (2) and the implied conditions that V is zero at

an infinite distance and is nowhere infinite are our conditions.

To find particular solutions of (1) we shall use a method

which is generally effective. Assume* that V= RG where R
is a function of r but not of 6, and is a function of 6 but

not of r. Substitute in (1) and reduce, and we get

1 rd\rR) 1

d
\
sm 6

-de) . (3)

R dr* Q sin 6 dd

Since the first member of (3) does not contain 6 and the

second does not contain r and the two members are identically

equal, each must be equal to a constant. Let us call this

constant, which is wholly undetermined, m{in -\- 1) ;
then

r d%rR) 1 4s'" 6
de)

,R^ = -w^ro-^r- = m{m+l);

whence r , ,' m(in -\- i)R = o, (4)

J dQ\
1

d
\
sme

lel
and ^Te'-^e + *0*+i)e.= o. (5)

* See the first foot-note on page 175.
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'
_ ^S] + m{m + 1 )& = 0l (7)
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Equation (4) can be expanded into

d'R dR , ,'

r--j-i + 2r^-
- m(m +1)^ = 0,

and can be solved by elementary methods. Its complete

solution is

R =. Arm + Br~m -\ (6)

Equation (5) can be simplified by changing the independ-

ent variable to x where x = cos 0. It becomes

L
dx\J

an equation which has been much studied and which is known

as Legendre's Equation.

We shall restrict ;//, which is wholly undetermined, to posi-

tive whole values, and we can then get particular solutions of

(7) by the following device :

Assume* that can be expressed as a sum or a series of

terms involving whole powers of x multiplied by constant

coefficients. .

Let 2anxn and substitute in (7). We get

2[n(n i)anx
n-'J

n(n -f- i)<V
M + m(m+ i)anx

n
]
= o, (8)

where the symbol 2 indicates that we are to form all the

terms we can by taking successive whole numbers for n.

Since (8) must be true no matter what the value of x, the

coefficient of any given power of x, as for instance xk
, must

vanish. Hence

(k + 2){k + i)ak+t
-

k(k -\-j)ak + m(m + i)ak = o,

m{m+i) k{k-\-i)
and ak+ ,

=
(k+l){k+2)

* fe)

If now any set of coefficients satisfying the relation (9) be

taken, = 1Eakxk
will be a solution of (7).

If k = m, then ak+% = o, ak+i = o, etc.

* See the first foot-note on page 175.
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Since it will answer our purpose if we pick out the simplest:

set of coefficients that will obey the condition (9), we can take

a set including am.

Let us rewrite (9) in the form

(*+2)(*+ !)*, + .

** ~ ~
(m - k)(m+ k - I)'

(IO>

We get from (10), beginning with k = m 2,

m(in 1)
*"" - ~

2\2m-i)
a""

_ m(m \){m 2)(m 3)
Um- A

~
~2.4.(2m- i)(2^-3)

*m%

m(m i)(m 2)(m $)(m 4)(m 5)
""- ~~ ~

2.4.6. (2m - i)(2m
-

z){2m - 5)
"" ' etC '

If m is even we see that the set will end with a
;

if m
is odd, with a.t .

_ mitn 1) ,
.

9 am xm - ) \x
m- 9

m L 2. {2m 1)

I

mjm - i)(m
-

2)(m
-

3) ^_ t _ n
' 2. 4. (2m i)(2m 3) "'J'

where am is entirely arbitrary, is, then, a solution of (7). It is

found convenient to take am equal to

(2m i)(2w 3) ... 1

and it will be shown later that with this value of am , Q 1

when .r = 1.

@ is a function of x and contains no higher powers of x
than xm . It is usual to write it as Pm(x).

We proceed to write out a few values of Pm(x) from the

formula

P (** - <2m - l )(2m - 3) - - * r .m _ Mm- 1)^-W- m \ [J
1

2. (2m-if2. (2m 1)

2.4. (2;;z i)(2m 3)

*f(
- i)(m-2)(m-s) ^m _< _ 1

,j jx
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We have :

Pjx) = I or P (cos 6) = I,

P
x{x) = x or P^cos 6) = cos 0,

Plx) = (3*
2 -

I) or P
2(cos 6)

= J(3 cos2 -
i),

P
9(x) = i($x>

-
3*) or P

3(cos 60 = i(5 cos
30- 3 cos 6\

^W = K35^
4

-30^
2

+3) or

P
4(cos 0) = 4(35 cos

4# - 30 cos
2
6> + 3),

^.(*) = K63* ~
70x* + 15*) or

/'.(cos 0)
= K63 cos

6
61 70 cos

3#+ 15 cos 6). j

We have obtained Q ==
/^(.ar) as a particular solution of (7),

and Q = Pm(cos 6) as a particular solution of (5). Pm{x) or

Pm(cos 0) is a new function, known as a Legendre's Coefficient,

or as a Surface Zonal Harmonic, and occurs as a normal form

in many important problems.

V'= rmPm(cos 6) is a particular solution of (1), and rmPm(cos 6)

is sometimes called a Solid Zonal Harmonic.

V = A
Q
P (cos 6) + A

l
rP

l{cos 6) + A^P^cos 6)

+ AyP3(cos6)+... (13)

satisfies (1), is not infinite at any point within the sphere, and

reduces to

V=A P (cos 0)+ ^(cos 6) + A,P,(cos 6)

+ A
s
P

3(cos6)+... (14)
when r = 1.

v= Af,(cos6) AfXcosd) A
tPJjcos0)

r r* r
z

H ~* r-.- (15)

satisfies (1), is not infinite at any point without the sphere, is

equal to zero when r = 00
,
and reduces to (14) when r = 1.

If then we can develop f{6) [see eq. (2)] into a series of the

form (14), we have only to put the coefficients of this series in

place of the A
, A,, A t , ... in (13) to get the value of Ffor a

point within the sphere, and in (15) to get the value of Fat a

point without the sphere.
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We shall see later (Art. 16, Prob. 22) that if f(0) = 1 for

o < 6 < and f{6) = o for < 6 < n,
2 2

Hence our required solution is

V= l-+
\rP,(cos ti)-\\

-r'Ps(cos (f)

+ I?- 2-^C0S ^--- <">

at an internal point ; and

V=^+\-\Px{cosB)--
7
---\pU:ose)2r 4 r 8 2 r 3V J

+I7-^?^C0S *) < l8>

?t an external point.

If r = and = o, (17) reduces to

To two decimal places F = 0.68, and the point r = , # = o-

4
is at potential 0.68.

If r = 5 and =
, (18) and Table I, at the end of this,

chapter, give

7t

and the point r = 5,
= is at potential 0.12.

4
If the radius of the conductor is a instead of unity, we

have only to replace r by in (17) and (18).
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Prob. 2. One half the surface of a solid sphere 12 inches in di-

ameter is kept at the temperature zero and the other half at 100 de-

grees centigrade until there is no longer any change of temperature

at any point within the sphere. Required the temperature of the

center
;
of any point in the diametral plane separating the hot and

cold hemispheres ;
of points 2 inches from the center and in the

axis of symmetry ;
and of points 3 inches from the center in a di-

ameter inclined at an angle of 45 to the axis of symmetry.
Ans. 50 ; 50 ; 73.9; 26.i

; 77.i ; 22.q.

Art. 5. Problem in Bessel's Functions.

As a last example we shall take the following problem :

The base and convex surface of a cylinder 2 feet in diameter

and 2 feet high are kept at the temperature zero, and the upper
base at 100 degrees centigrade. Find the temperature of a

point in the axis one foot from the base, and of a point 6 inches

from the axis and one foot from the base, after the permanent
state of temperatures has been set up.

If we use cylindrical coordinates and take the origin in the

base we shall have to solve equation (6), Art. 1
; or, represent-

ing the temperature by u and observing that from the sym-

metry of the problem u is independent of 0,

(1)
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contain r
;
therefore the first member cannot. Hence each

member of (5) is a constant, and we can write (5)

R ~dr*
+ rR dr~~ Z dz 1

=~ M ' ^

when jj
7
is entirely undetermined.

d*Z
Hence -- ^Z o, (7)

dz x 7

d*R
x

\dR
xand _+__ + ;,* = 0L (8)

Equation (7) is easily solved, and its general solution is

Z= ^^*+ ite
~ ^2

,
or the equivalent form

Z = C cosh (/*#) -(- Z> sinh (/*#). (9)

We can reduce (8) slightly by letting //r = x, and it becomes

d*R . \dR . u , N

25?+52F
+ * =sa < I0>

Assume, as in Art. 4, that 7? can be expressed in terms of

whole powers of x. Let R = 2anxn and substitute in (10).

We get

2[n(n \)anx
n " a + nanx

n - 2

-J- <VM
]
= o,

an equation which must be true, no matter what the value of x.

The coefficient of any given power of x, as xk
~*, must, then,

vanish, and

k(k i)ak + kah+ ah ,
= o,

or -

a^ + ^_ 2
= o,

whence we obtain ^_ 3
= k*ak (11)

as the only relation that need be satisfied by the coefficients in

order that R = 2akxk shall be a solution of (10).

If k = o, ak _^ 0, ak _ A 0, etc.

We can, then, begin with k = o as the lowest subscript.
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If now we can develop unity into a series of the form

i = S,/.(Mxr) + B,/,(M,r) + BJj^r) + ...,

\~B. sinh (/u.z) T , N ,

B sinh ( ujz) T , N . "1 , v"= ITO
Linnr(^/^"

r

)+iiHhT2^-
/'(lv)+ -

J (I5)

satisfies (i) and the conditions (2), (3), and (4).

We shall see later (Art. 21) that it /Ax) = -*&
ax

~
\w/wyiu&i + iUK) + ''

J (l6)

for values of r < I.

Hence

= 200
r /.(^r) sinh (/i,*) 7.(w) sinh (/y)

"|

L^/,0^) sinh (2/i.)
^

^/X^) sinh (2//,)
"*" * ' J ^ 7>

is our required solution.

At the point r = o, z = 1 (17) reduces to

= 200r
sinh^ _i_ ___iiiih^ 1 I

L^/X/O sinh (2/1J /i,/1 ()"t) sinh ( 2/0 "J

L/ij/,0*,) cosh
/*, /i./X/iJ'cosh /7,

"
'J*

since7 () = 1 and sinh (2.ar)
= 2 sinh ^ cosh x.

If we use a table of Hyperbolic functions* and Tables II

and III, at the end of this chapter, the computation of the

value of u is easy. We have

^=2.405 yU2
= 5.52O

/i(/0 = 0.5190 /X^) = -
0.3402

colog /*,
= 9.6189 10 colog /*,= 9.2581 10

"
7<X> = 0.2848 /.(*.) = 0.4683/*

M cosh /*,= 9.2530 10 "
coshywa

= 7.9037 10

9.1567 10 7.6301W 10

* See Chapter IV, pp. 162, 163, for a four-place table on hyperbolic func-

tions.
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(/*i/(/0 cosh Mi)'
1 = O.1434

0*i/i(/O cosh ^y 1 = 0.0058

0.1376; a=i3.8

At the point r = J, z = I, (17), reduces to

,,-icef
7^>

I

^^
-I- 1

L MxJiiMd cosh /*,

~
/i,/, (^9)

cosh /if J

/ (/0 = 0.6698

log/(/0 = 9-82 59
- 10

colog MiA(Mi) cosh//, 9.1567 10

8.9826 10

/.(*/<.) = - 0.1678

log /.(i/O

colog A/AM*) cosh /I,
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Art. 6. The Sine Series.

As we have seen in Art. 3, it is sometimes important to be

able to express a given function of a variable, x, in terms of sines

of multiples of x. The problem in its general form was first

solved by Fourier in his " Theorie Analytique de la Chaleur"

{1822), and its solution plays an important part in most branches

of Mathematical Physics.

Let us endeavor to so develop a given function of x,/{x),
in terms of sin x, sin 2xt sin $x, etc., that the function and the

series shall be equal for all values of x between o and n.

We can of course determine the coefficients a
lf
#

a ,
a

% ,
. . . an

so that the equation

fix) = a
x
sin x + #

2
sin 2x -f- as

sin $x -f~ . . . -|- an sin nx (1)

shall hold good for any n arbitrarily chosen values of x between

O and n
;
for we have only to substitute those values in turn

in (1) to get n equations of the first degree, in which the n co-

efficients are the only unknown quantities.

For instance, we can take the n equidistant values Ax, 2Ax,

3 Ax, . . . nAx, where Ax =
,
and substitute them lot x in

n-\- 1

<i). We get

/{Ax) = a
x
sin Ax + #

a
sin 2Ax -f- a

%
sin $Ax + . .

-f- an sin nAx,

J[2Ax) = a
x
sin 2Ax -f- ^

a
sin ^Ax -f- a

s
sin 6Ax +

+ an sin 2nAx,

f{$Ax) = a
1
sin 3Ax -f- a^ sin 6Ax+ a

3
sin gAx -\- . .

+ an sin $nAx,

/(nAx) = a
x
sin nAx -f- a^ sin 2nAx -f- <^

3
sin 3z/jtr -4- . .

-f- an sin M^r,

^ equations of the first degree, to determine the n coefficients

a
x , at , a% , . . an.

Not only can equations (2) be solved in theory, but they
can be actually solved in any given case by a very simple and

1- (2)
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ingenious method due to Lagrange,* and any coefficient a,n can

be expressed in the form

2
K ~ n

am = --T-2EAkAx)
sin (* A*)- (3)

If now n is indefinitely increased the values of x for which

(i) holds good will come nearer and nearer to forming a con-

tinuous set
;
and the limiting value approached by am will

probably be the corresponding coefficient in the series required

to represent fix) for all values of x between zero and n,

Remembering that (n + \)Ax = n, the limiting value in

question is easily seen to be

am = -
ff{x) sin tnxdx, (4)

This value can be obtained from equations (2) by the fol<

lowing device without first solving the equations :

Let us multiply each equation in (2) by the product of Ax

and the coefficient of am in the equation in question, add the

equations, and find the limiting form of the resulting equation

as n increases indefinitely.

The coefficient of any a, aK in the resulting equation is

sin kAx sin mAx . Ax+ sin 2kAx sin 2mAx . Ax -\- . . .

-\- sin ukAx sin nmAx . Ax,

Its limiting value, since (n + i)Ax = ar, is

/ sin kx sin mx . dx
;

but
it *

f sin kx sin mx.dx =
i/*[cos

(m k)x cos(^+ *)x]dx= o

if m and k are not equal.

* See Riemann's Partielle Differcntialgleichungen, or Byerly's Fourier's

Series and Spherical Harmonics.
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The coefficient of am is

A*(sin
3 mAx -j- sin

2 2mAx -\- sin
2

imAx -\- . . . + sin
2

nmAx).

Its limiting value is

ysin
2 w^ .dx = .

2
o

The first member is

/{Ax) sin ;;/J^r . Jjr -\-fi2Ax) sin 2mAx . Ax+ . . .

+/(/zz/;tr) sin mnAx . z/^r,

and its limiting value is

/
/ fix) sin mx.dx.

Hence the limiting form approached by the final equation

as n is increased is

/ fix) sin mx . dx = #wt .

Whence tfw = -J fix) sin mx.dx (5)

as before.

This method is practically the same as multiplying the

equation

f{x) = a
x
sin x -f- a^ sin 2x -f- az

sin $x+ (6)

by sin w;r. akr and integrating both members from zero to tt.

It is important to realize that the considerations given in

this article are in no sense a demonstration, but merely estab-

lish a probability.

An elaborate investigation
* into the validity of the develop-

ment, for which we have not space, entirely confirms the results

formulated above, provided that between x = o and x = n the

* See Art. 10 for a discussion of this question.
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function is finite and single-valued, and has not an infinite num-

ber of discontinuities or of maxima or minima.

It is to be noted that the curve represented by y=fix)
need not follow the same mathematical law throughout its

length, but may be made up of portions of entirely different

curves. For example, a broken line or a locus consisting of

finite parts of several different and disconnected straight lines

can be represented perfectly well by y a sine series.

As an example of the application of formula (5) let us take

the development of unity.

Here fix) = 1.

am = /sin mx . dx

/
T cos mx

sin mx . ax = .m
ir/[ I

sin mx .dx (1 cos nnt) = [1 ( l)
w
]m m J

= o if m is even

= if m is odd.
m

4 /sin x . sin xx . sin $x ,

sin Jx . \ , .

Hence I =
(

+ -^-+
--+^ +...). (?)

It is to be noticed that (7) gives at once a sine development

for any constant c. It is,

_4f/sin;r sin 3* sin $* \ ..

Prob. 4- Show that for values of x between zero and 7t

, . Tsin x sin 2x . sin xx sin 4X .

(a) x = 2\ + h 1w Li 2 3 4 J

.,. . . 4 Tsin jc sin %x
,

sin 5 a: sin nx .

(*)/W =
![_ r +1 f +---J
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if f(x) = x for o < x < -, and f(x) = n x for - < x < tt.

w /(*) =

2 Tsin jc
,

2 sin 2.2: . sin xx
,

sin s.x . 2 sin 6jc . sin nx
,

71 7t

if fix) = 1 for o < x < ,
and /(#) = o for < x < /r.

2 2

(</) sinh x =

2 sinh tt

n

(e) x* =

sin x sin 2x -\ sin xx sin ax + . . . .

2 5 10 17 J

Z[\t
~
?7 sin x ~ 7 sin 2* +

\J
~

?J
sin 3*~ ^

sin 4*+
-J*

Art. 7. The Cosine Series.

Let us now try to develop a given function of x in a series

of cosines, using the method suggested by the last article.

Assume

j\x) b^-\-b x
cos x -\- &, cos 2x -\-b%

cos 3^ -f- . . . (1)

To determine any coefficient bm multiply (1) by cos mx .dx

and integrate each term from o to n.

IT

I b cos mx . dx = o.

w

I bk cos kx cos w^ . dx=o, if / and k are not equal.

/7tbm cos
2

#z;tr dx = #w ,
if #z is not zero.

it

2 /
Hence w = / f(x) cos mx ,dx> (2)

if / is not zero.



Art. 7.] the cosine series. 193

To get b multiply (i) by dx and integrate from zero to n.

a

Jb.dx
= Z> 7T,

IT

1 bk cos kx . dx = O.

IT

Hence b = l

~Jf{x)dxy (3)

which is just half the value that would be given by formula (2)

if zero were substituted for m.

To save a separate formula (1) is usually written

f(x) = ib + b
x
cos x + a

cos 2x + b
3
cos 3* + . . ., (4)

and then the formula (2) will give b as well as the other coef-

ficients.

Prob. 5. Show that for values of x between o and 7t

, . 7C A /COS X ,
COS 7.X

,
COS KX . \w * =

2--!(-7-+-7
L+^L +

);

/,n w x * 8 /cos 2X cos6x
,

cos io# . \

(4) /[*).= ___^_l_+_-+_?_-+...J,

if /(*) = a: for o < x < ,
and f{x) = 7T x for < x X n;

2 2

, . .. % 1,2 /COS .# COS 3^ ,
COS <3: \

W /M -j+jH 3
+

s -)'

if /(*) = 1 for o < x < ,
and fix) = o for - < x < n^

2 2

21 1

(^) sinh x = (cosh n 1) (cosh 7T -f- 1) cos x

-\ (cosh n 1) cos 2.2: (cosh n -j- 1) cos 3* + . . . \;.

f \
n* /cos # COS 2X COS 3JC cos 4X \
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Art. 8. Fourier's Series.

Since a sine series is an odd function of x the development
of an odd function of x in such a series must hold good from

x = ft to x = ft, except perhaps for the value x = o, where

it is easily seen that the series is necessarily zero, no matter

what the value of the function. In like manner we see that

if f{x) is an even function of x its development in a cosine

series must be valid from x = ft to x = ft.

Any function of x can be developed into a Trigonometric

series to which it is equal for all values of x between n and n.

Let/(^) be the given function of x. It can be expressed

as the sum of an even function of x and an odd function of x

by the following device :

jy)=
Mz*+M^k=Jl (I)

identically; but =Q '
' -A 1

js not changed by reversing

the sign of x and is therefore an even function of x\ and when

we reverse the sign of x,
^

- ^ is affected only to the
2

extent of having its sign reversed, and is consequently an odd

function of x.

Therefore for all values of x between n and n

J\x) -h J\ j _ _^ _|_ ft cos x -\-b%
cos 2x+ 8

cos ix + . . .

where bm = J v J L cos mx . dx
;

ft t/ 2
o

A*) A x
) ,..-,and -i - '- = a

x
sin x -f- #3 sin 2x + ^

3
sin $x -f- . .

. 2 }f(x)j\- X) . .

where am = -
/
^^ '- sin mx . dx.

ft / 2
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bm and am can be simplified a little.

bm /
Jy ' '

X ^-cos mx. dx
71 U 2

It It

jAx) cos mx dxJrJA x) cos tnx . d-r
|

;

o o
-J

but if we replace ^ by ;r, we get

ir

jA x
)
cos w* dx= j f{x) cos fnx.dx^ JAX)

Q0S inx.dx,

fl-

and we have w = IAx) cos w;lr dx*

It

In the same way we can reduce the value of am to

it

IAx^ sm mx >dx.

it

Hence

Ax
)
= -

&o + ^i cos * + ^a cos 2;p + ^ cos 3^ -f . . .

-|- tf,
sin x -\- a^ sin 2# -f~ ^s sm 3X + > (

2
)

ir

where #w = JAx) cos w;tr d*> (3)

and

7T

tfw = l-fA*)
sin ** * (4)

and this development holds for all values of x between n

and tc.

The second member of (2) is known as a Fourier's Series.

The developments of Arts. 6 and 7 are special cases of

development in Fourier's Series.

Prob. 6. Show that for all values of x from n to n

2 sinh 7rf~i 1 .1 1 .1 . ~]
e* = cos #-4 cos 2.* cos $x-\ cos4#+..

7t \_2 2 5 10 17



196 HARMONIC FUNCTIONS. [CHAP. V.

,
2 sinh it Ti . 2 . 3 . 4 . .

H sin x sin 2JC 4- sin 3^ sin 4* -\- . . . .

Prob. 7. Show that formula (2), Art. 8, can be written

f(x) = -
*, COS#, + C

x
COS (X fix) + C% COS (2*

- A)

+ <T
3
COS (3* A) +

where. cm = (,
2 + )* and fim = tan" 1 -~"

Prob. 8. Show that formula (2), Art. 8, can be written

f(x) = ~c sin /59 + c
x
sin (* + A) + '. sin (

2X + A)
2

+ c
%
sin (3a; + /?3) + . . .

,

where cm {aJ + b,*)* and fim = tan' 1
.

Art. 9. Extension of Fourier's Series.

In developing a function of x into a Trigonometric Series it

is often inconvenient to be held within the narrow boundaries

x = n and x = it. Let us see if we cannot widen them.

Let it be required to develop a function of x into a

Trigonometric Series which shall be equal to f(x) for all values.

of x between x = c and x = c.

Introduce a new variable

7t

z = X,
c

which is equal to n when x = c, and to n when x = c.

f(x) = /( z
)
can be developed in terms of z by Art. S y

(2), (3), and (4). We have

f[~z)
=

2
b + * cos * + ^

9
cos 2* + ^

3 cos $z +
-\- ^ sin -f- #2

sin 2^r + ^
3
sin 3# + . . . , (1)

where bm = Jf\zj cos mz . <&, (2)
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and
'

am //( A sm m% dz
y (3)

n

and (1) holds good from z = n to z = n.

Replace z by its value in terms of x and (1) becomes

f(x) = - o -f- bx
cos \- 0^ cos

f-
o

3
cos

2
u,t

*
.

c
' J

C
'

+ a
l sm+tf,sm + a, sin +..,.; (4)

and (2) and (3) can be transformed into

* = y /(*) cos
j-dx> (5)

c

* = ff(x) sin
^r-dx, (6)

c

and (4) holds good from x = c to x = c.

In the formulas just obtained c may have as great a value

as we please so that we can obtain a Trigonometric Series for

f(x) that will be equal to the given function through as great

an interval as we may choose to take.

It can be shown that if this interval c is increased indefi-

nitely the series will approach as its limiting form the double
00 00

integral I f(X)d\ I cos a{X x)da, which is known as a

00

Fourier's Integral. So that

+00 so

/(*) = -~f f(X)d\f cos at{\
- x)da (7)

for all values of x.

For the treatment of Fourier's Integral and for examples
of its use in Mathematical Physics the student is referred to

Riemann's Partielle Differentialgleichungen, to Schlomilch's

Hohere Analysis, and to Byerly's Fourier's Series and

Spherical Harmonics.
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Prob. 9. Show that formula (4), Art. 9, can be written

f(x) = -c
t
cos ^ + c

x
cos

( Ay +A cos
^-^-

-
/?,j

+ ,3 cos(^-/?3)+...,

where C* = (" + bmy and /?,
= tan" 1

-.

Prob. 10. Show that formula (4), Art. 9, can be written

/(*) = \
c% sin Po + '1 sin

(^T + Aj + '1 sin (^ +
AJ

where ^ = ( w
3 + m

2

)* and /?w = tan -1 -^.

Art. 10. Dirichlet's Conditions.

In determining the coefficients of the Fourier's Series rep-

resenting f(x) we have virtually assumed, first, that a series of

the required form and equal to f(x) exists
;
and second, that

it is uniformly convergent ; and consequently we must regard

the results obtained as only provisionally established.

It is, however, possible to prove rigorously that if f(x) is

finite and single-valued from x =. n to x = 7t and has not

an infinite number of (finite) discontinuities, or of maxima or

minima between x = n and x n, the Fourier's Series of

(2), Art. 8, and that Fourier's Series only, is equal to f{x)
for all values of x between n and ?r, excepting the values of

x corresponding to the discontinuities of f{x), and the values.

n and n
;
and that if c is a value of x corresponding to a

discontinuity of f{x), the value of the series when x = c is

iJQ[A*+ )+/( )]; and that when x = n or

x = it the value of the series is $'[/(*) +/( *)].

This proof was first given by Dirichlet in 1829, and may be

found in readable form in Riemann's Partielle Differential-

gleichungen and in Picard's Traite d'Analyse, Vol. I.
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A good deal of light is thrown on the peculiarities of trigo-

nometric series by the attempt to construct approximately the

curves corresponding to them.

If we construct y = a
l
sin x and y = a

a
sin 2x and add the

ordinates of the points having the same abscissas, we shall ob-

tain points on the curve

y = a
1
sin x -f a^ sin 2x.

If now we construct y = a
%
sin ^x and add the ordinates to

those of y = a
x
sin x -f a

2 sin 2x we shall get the curve

y = a
t
sin x -f- a

9
sin 2x -\- a%

sin $x.

By continuing this process we get successive approximations to

y = a
x
sin x + #

a
sin 2* + tf

3
sin $x + 4

sin ^x +
'
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tion to this curve. In each figure the curve y = the series,

and the approximations in question are drawn in continuous

lines, and the preceding approximation and the curve corre-

sponding to the term to be added are drawn in dotted lines.

Prob. ii. Construct successive approximations to the series

given in the examples at the end of Art. 6.

Prob. 1 2. Construct successive approximations to the Maclaurin's

xs x b

Series for sinh x, namely x -\
-

-j -|

Art. 11. Applications of Trigonometric Series.

(a) Three edges of a rectangular plate of tinfoil are kept
at potential zero, and the fourth at potential I. At what po-

tential is any point in the plate ?

Here we have to solve Laplace's Equation (3), Art. I,

which, since the problem is two-dimensional, reduces to

a^+W =
> (I)

subject to the conditions V = o when x = o, (2)

V=o " x = a, (3)

V=o "
y = o, (4)

v=i y = t- (5)

Working as in Art. 3, we readily get sinh/?jj> sin fix,

sinh fiy cos fix, cosh /3y sin fix, and cosh fiy cos fix as particu-

lar values of V satisfying (1).

V sinh ^ sin ^ satisfies (1), (2), (3), and (4).
Cc CL

[-sinh
2 sinh^ "I

V = ^\ -^~+ 1 A sin + (6>

^Lsinh^ ' * 3 sinh *L*
T

Ja a

is the required solution, for it reduces to 1 when y = b. See

(7), Art. 6.
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(b) A harp-string is initially distorted into a given plane
curve and then released

;
find its motion.

The differential equation for the small transverse vibrations

of a stretched elastic string is

as stated in Art. i. Our conditions if we take one end of

the string as origin are

y = o when x o, (2)

y = q " * =
/, (3 )

-^
= / =

, (4)

y =fx "
t = o. (5)

Using the method of Art. 3, we easily get as particular solutions

of (1)

y = sin #r sin afit, y = sin /far cos tf/^,

j = cos /for sin
tf/?/", and y = cos /?* cos afit.

y = sin j- cos
^

satisfies (1), (2), (3), and (4).

. mnx mnat (^
am sin 1 cos ; , \p)

where am = j Cf{x) sin^^ . dx (7)

is our required solution ;
for it reduces to/(*) when/ = o. See

Art. 9.

Prob. 13. Three edges of a square sheet of tinfoil are kept at

potential zero, and the fourth at potential unity ;
at what potential

is the centre of the sheet ? Ans. 0.25.

Prob. 14. Two opposite edges of a square sheet of tinfoil are

kept at potential zero, and the other two at potential unity ; at

what potential is the centre of the sheet ? Ans. 0.5.

Prob. 15. Two adjacent edges of a square sheet of tinfoil are
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kept at potential zero, and the other two at potential unity. At
what potential is the centre of the sheet ? Ans. 0.5.

Prob. 16. Show that if a point whose distance from the end of a

harp-string is -th the length of the string is drawn aside by the

player's finger to a distance b from its position of equilibrium and
then released, the form of the vibrating string at any instant is given

by the equation

2bn ^ / i . nnt . mnx m7iat\
sin sin

(n 1 ) n*
^-* Km*

"

n

mnx mnat\
cos

>

Show from this that all the harmonics of the fundamental note of

the string which correspond to forms of vibration having nodes at

the point drawn aside by the finger will be wanting in the complex
note actually sounded.

Prob. 17.* An iron slab 10 centimeters thick is placed between and
in contact with two other iron slabs each 10 centimeters thick. The
temperature of the middle slab is at first 100 degrees Centigrade

throughout, and of the outside slabs zero throughout. The outer

faces of the outside slabs are kept at the temperature zero. Re-

quired the temperature of a point in the middle of the middle slab

fifteen minutes after the slabs have been placed in contact.

Given a % = 0.185 m C.G.S. units. Ans. io.3.

Prob. 18.* Two iron slabs each 20 centimeters thick, one of which
is at the temperature zero and the other at 100 degrees Centigrade

throughout, are placed together face to face, and their outer faces

are kept at the temperature zero. Find the temperature of a point
in their common face and of points 10 centimeters from the com-
mon face fifteen minutes after the slabs have been put together.

Ans. 22.8
; 15.! ; i7.2.

Art. 12.t Properties of Zonal Harmonics.

In Art. 4, z = Pm {x) was obtained as a particular solution of

Legendre's Equation [(7), Art. 4] by the device of assuming
that z could be expressed as a sum or a series of terms of

the form anxn and then determining the coefficients. We
* See Art. 3.

f The student should review Art. 4 before beginning this article.
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can, however, obtain a particular solution of Legendre's equa-
tion by an entirely different method.

The potential function for any point (x, y, z) due to a unit

of mass concentrated at a given point (xx,yx% ,)
is

V=
; (I)

and this must be a particular solution of Laplace's Equation

[(3), Art. 1], as is easily verified by direct substitution.

If we transform (i) to spherical coordinates we get

V=
,

1 = (2)
V r

1

2rr,[cos cos B
x -\- sin 6 sin d

x
cos (00,)] + r

x

%

as a solution of Laplace's Equation in Spherical Coordinates

[(5), Art. i].

If the given point (xxt yx >
z

x ) is taken on the axis of X, as it

must be in order that (2) may be independent of 0, 0,
= O, and

^=
,-, .-v . 13)
Vr* 2rr, cos + rx

is a solution of equation (1), Art. 4.

Equation (3) can be written

^('"V08 *+)"*' (4)

and if r is less than r, ^1
2- cos 6 +

J
can be developed

into a convergent power series. Let 5?/
- be this series,

1

I rw

/, being of course a function of 6. Then V=2pm is a

solution of (1), Art. 4.

Substituting this value of V in the equation, and remem-

bering that the result must be identically true, we get after a

slight reduction
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but, as we have seen, the substitution of x = cos 6 reduces this

to Legendre's equation [(7), Art. 4]. Hence we infer that the

coefficient of the mth. power of z in the development of

>(i 2xz-\-z*)~
i iz a function of x that will satisfy Legendre's

^equation.

(i 2XZ+ Z
2

)"*
=

[i 2(2X *)] -*,

and can be developed by the Binomial Theorem
;
the coefficient

of zm is easily picked out, and proves to be precisely the func-

tion of x which in Art. 4 we have represented by Pm(x), and

have called a Surface Zonal Harmonic.

We have, then,

tl -2xz+S)-*=P,{x)+Pl(x).*+P,(x).S+PJLx).e+.. (5)

if the absolute value of z is less than I.

If x = I, (5) reduces to

(I
_ 2g+j?)-i

= P9(l)+Pl(t).i+PJil).S+ />(!) . *> + . . . ;

but (1
- 2*+f)-*=(i--*)-

1=i+s+ J +*>+...;
hence Pm(l) = I. (6)

Any Surface Zonal Harmonic may be obtained from the

two of next lower orders by the aid of the formula

(n + l)PnU*)
~

(2* + 1WU*) + Pu- (*) = O, (7)

which is easily obtained, and is convenient when the numerical

value of x is given.

Differentiate (5) with respect to z, and we get

il
z

(

L+* = p>w+2PM -' +3PM'*+----

Avhence

^1 2XZ-\-S y

or by (5)

(I
- 2*8 + )(/,(*) + Z/fc) .*+ 3/>,(*) ." )

+ (s x){P,(x) + />,(*) * + ^.(*)
*+)= 0. (8)
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Now (8) is identically true, hence the coefficient of each

power of z must vanish. Picking out the coefficient of zn and

writing it equal to zero, we have formula (7) above.

By the aid of (7) a table of Zonal Harmonics is easily com-

puted since we have P (x) = 1, and Px{x) = x. Such a table

for x = cos is given at the end of this chapter.

Art. 13. Problems in Zonal Harmonics.

In any problem on Potential if Fis independent of sa

that we can use the form of Laplace's Equation employed in

Art. 4, and if the value of Fon the axis of ^fis known, and

can be expressed as 2amrm or as ^ 3+I> we can write out

our required solution as

V=2amr~Pm (cos8) or V^^^'^ i

for since Pm(i) = 1 each of these forms reduces to the proper
value on the axis

;
and as we have seen in Art. 4 each of them

satisfies the reduced form of Laplace's Equation.

As an example, let us suppose a statical charge of M units

of electricity placed on a conductor in the form of a thin circu-

lar disk, and let it be required to find the value of the Poten-

tial Function at any point in the "
field of force" due to the

charge.

The surface density at a point of the plate at a distance r

from its centre is

M
<T =

4#7T Va*

and all points of the conductor are at potential . See Pierce's

Newtonian Potential Function ( 61).

The value of the potential function at a point in the axis

ot the plate at the distance x from the plate can be obtained

without difficulty by a simple integration, and proves to be

M .xV = cos-*
,

,
2 . (1)2a x* + a*

v '
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The second member of (i) is easily developed into a power
series.

M . x* - a*
cos

2a x* + a2

MYn x . x* x* . x7 1 ;.

Hence

-lJi>.(cos )+-...] (4)
5

is our required solution if r < a and < -, as is

F =
jj-

- - VP, (cos <0 + -
? Pt (cos 0)

-lJ/>.(cos) + ...]ifr>,
(5)

The series in (4) and (5) are convergent, since they may be

obtained from the convergent series (2) and (3) by multiplying

the terms by a set of quantities no one of which exceeds one

in absolute value. For it will be shown in the next article that

Pm (cos 6) always lies between 1 and 1.

Prob. 19. Find the value of the Potential Function due to the

attraction of a material circular ring of small cross-section.

The value on the axis of the ring can be obtained by a simpleM
integration, and is . = = if M is the mass and c the radius of the

ring. At any point in space, if r < c

V m y [/'.(cos
0)-

1-
p,(cos 6) + 1^ /,(* 60

-
],

and if r > c
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T= - f-^ (cos 6)
- I -

3
P

2 (cos 6) + T-^ 0>4(cos 0)
-

. . .1
C Lr 2 r 2 . 4 r 4V ' J

Art. 14. Additional Forms.

(#) We have seen in Art. 12 that Pm(x) is the coefficient of

zm in the development of (i 2xz-\- #*)-* in a power series.

(l
- 2XZ + Z*)

~
i = [I

-
*(*' + e~

') + 2

]-*

=
(I **')" K 1 ^*0 "*

If we develop (i ze01')-* and (i ze~ 9i
)-l by the Bi-

nomial Theorem their product will give a development for

(i 2xz + z*)~l. The coefficient of zm is easily picked out

and reduced, and we get

PJcos 6) =
1.3.5... (2m i) r n 1

I Wl

3.4.6... 2m L
2C0sw,g+ 2

i.(2W -.)
C08 ^- 2

)g

i 3- (*-)
cos( _

4)g+ 1
(I)'

I.2.(2W-l)(2W-3)
V 17 I J W

If w is odd the parenthesis in (1) ends with the term con-

taining cos ;
if m is even, with the term containing cos o, but

in the latter case the term in question will not be multiplied by
the factor 2, which is common to all the other terms.

Since all the coefficients in the second member of (1) are

positive, Pw(cos 0) has its maximum value when # = o, and its

value then has already been shown in Art. 12 to be unity.

Obviously, then, its minimum value cannot be less than 1.

(b) If we integrate the value of Pm{x) given in (11), Art. 4,

m times in succession with respect to x, the result will be

r I '3-5 (2m 0/ 2 W t.

tound to differ from ^-^. ^ \x* i)
m
by terms m-

{2m)\
'

volving lower powers of x than the 171th.

Hence PJfi =^^~ I* (*)
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(c) Other forms for Pm{x\ which we give without demon-

stration, are

PĴ ~ m \ dx > tv+y + /
(3>

( i)
m d

m
i_

IT

PJx) = \f\* + Vx^i . cos <]V0. (4)

P,(*) = l/
#

. (j)

^j/ [* V -T I . COS 0]
m+1

(4) and (5) can be verified without difficulty by expanding

and integrating.

Art. 15. Development in Terms of Zonal Harmonics.

Whenever, as in Art. 4, we have the value of the Potential

Function given on the surface of a sphere, and this value de-

pends only on the distance from the extremity of a diameter,

it becomes necessary to develop a function of 6 into a series

of the form

Aflcos d) + ^(cos 6) + Aflcos 0) + . . . ;

or, what amounts to the same thing, to develop a function of

x into a series of the form

AJ>.{?) + Aflx) + Afix) + ....

The problem is entirely analogous to that of development
in sine-series treated at length in Art. 6

r
and may be solved by

the same method.

Assume f(x) = A P (x) + A
x
P

x{x) + A%P%(x)+ . . . (1)

for 1 < x < 1. Multiply (1) by Pm(x)dx and integrate from

1 to 1. We get

1 _ 1

ff{x)Pm(x)dx
^ "s\A.fPm(x)Pn{x)dx\ (2)
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We shall show in the next article that

i

j
Pm(x)Pn(x)dx = o, unless m = n9

-i

i

and that f[PJx)ydx
=^.

-1

Hence Am = ^-t-1

ff(x)Pm{x)dx. (3)

It is important to notice here, as in Art. 6, that the method

we have used in obtaining A m amounts essentially to deter-

mining Am ,
so that the equation

Ax) == A P {x) + A
x
P

x{x) + Afix) + . . . + A nPn{x)

shall hold good for n -\- I equidistant values of x between 1

and I, and taking its limiting value as n is indefinitely in-

creased.

Art. 16. Formulas for Development.

We have seen in Art. 4 that z = Pm(x) is a solution of

Legendre's Equation -j-\ (1 x*) -f- m(m + 1)2 = o. (1)

Hence ^[(l
-

x*)^?] + m(m+ i)Pm{x) = o, (2)

and i[(l -^-2^]+^ +I^W =a (3 >

Multiply (2) by PWW and (3) by Pm (x), subtract, transpose,

and integrate. We have

1

\m{m + I)
- n(n+ i)]fpm(x)Pn(x)dx

-1
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=[^K.-)"-f
i-^)<.-^'i];,

-1

-1

by integration by parts,

= o.

i

Hence fPm(x)Pn(x)dx = O, (6)

-i

unless m = n.

If in (4) we integrate from x to I instead of from I to \ r

we get an important formula.

Pm(x)Pn(x)dX= S r-=- ~,

, , (7)J "*v ' *x ;
/(; + i) n(n-\- i)

and as a special case, since P^-*-) = I.

unless m = o.

i

To get f[Pm{x)Jdx is not particularly difficult. By (2),

-1

Art. 14,

flP4*)7d*^ttf dx~ dx-
* dx (9>

~i v ' -1

By successive integrations by parts, noting that

dx__(^
a _

i)
m contains (x* 1)* as a factor if k < m, and
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that K = (2m)l we get
dx*m

i

-1 v *' -1

f{x* - i)
mdx = f(x - i)

m
(x + i)

mdx
-i -i

= fix - i)
l{x+ i)

m+1dx
m-\- i J v ' \ -r

J 2 +l(m \y-
( V {2tn)\ J { + U ~

( I}
(2m + 1) !'

Hence /W)]W* = -^rj. <i I)

-i '

i

Prob. 20. Show that / Pm(x)dx = o if tn is even and is not zero

m-\
= (- i)"^ / \ x -

3-5-7---M
if w is odd

m\m-\- \) 2 .4.6 .. .(m i)

Prob. 21. Show
that^ [AC*)]V* = 2m \

I
' Note that

[^(tf)]* is an even function of x.

Prob. 22. Show that if f(x) = o from x = 1 to x = o, and

,/(.*)
== 1 from x = o to x = x,

Prob. 23. Show that i?(0) = ^ BmPm (cos 0) where

i?w = fF(d)Pm(cos 6) sin dd.
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Prob. 24. Show that

esc 6 = y [1
+ 5(j)V, (cos (?) +

9(^5)
A(cos 0) "+

.].

See (1), Art. 14.

Prob. 25. Show that

** =
1.3.5

a

.

!

.(a +I)[
(2" + l}/> (*> + (" - 3)

2JL~^-i (x)

+ (in
-

7)
<3" + '* ~

'>
/>._,(*) +

...].

1 1

Note that fx
nPm(x)dx = 1 fx* ^x

\'~
^"

-dx, and use the
t/ 2 "V// / dxm
_i .-1

method of integration by parts freely.

Prob. 26. Show that if V is the value of the Potential Function

at any point in a field of force, not imbedded in attracting or repel-

ling matter; and if V
'

/{&) when r = a,

V=2Am PM(cos6)if r<a

and V = 2jJ^Pm{a V) if r > a,

where Am =
2

-^J
-ff{0)P

nt{cos 6) sin Odd.

Prob. 27. Show that if

V = c when r = a
;
F = c if r < #

,
and F = if r > dr.

r

Art. 17. Formulas in Zonal Harmonics.

The following formulas which we give without demonstra-

tion may be found useful for reference :

^^=(2n-i)P..,(x)+(2n-s)PU')+(2n-9)PU'}+----(i)

1

fp{x)dx = _L_[JP,_1(*)
-

/>+,(*)]. (3)
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Art. 18. Spherical Harmonics.

In problems in Potential where the value of Fis given on the

surface of a sphere, but is not independent of the angle 0, we

have to solve Laplace's Equation in the form (5), Art. I, and

by a treatment analogous to that given in Art. 4 it can be

proved that

V = rm cos n<b sin
M

, and V= rm sin nd> sinM 6 r^~^>

where ju
= cos 6, are particular solutions of (5), Art. 1.

The factors multiplied by rm in these values are known as

Tesseral Harmonics. They are functions of <p and 6, and they

play nearly the same part in.unsymmetrical problems that the

Zonal Harmonics play in those independent of 0.

YJji, 0) = A.Pm(p) +
nl (A n cos + Bn sin 0)sin ^*PjMm=i (IfA.

is known as a Surface Spherical Harmonic of the #zth degree,

and V=r~Ym(fii,<p) and V= -^1 (, <p)

satisfy Laplace's Equation, (5), Art. 1.

The Tesseral and the Zonal Harmonics are special cases of

the Spherical Harmonic, as is also a form Pm(cos y) known as

a Laplace's Coefficient or a Laplacian ; y standing for the angle

between r and the radius vector r,
of some fixed point.

For the properties and uses of Spherical Harmonics we

refer the student to more extended treatises, namely, to

Ferrer's Spherical Harmonics, to Heine's Kugelfunctionen, or

to Byerly's Fourier's Series and Spherical Harmonics.

Art. 19.* Bessel's Functions. Properties.

We have seen in Art. 5 that z =J {x) where

/.w = i-J
i

+
i^?

-
irJ^ + --. (1)

* The student should review Art. 5 before reading this article.
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is a solution of the equation

d*z . I dz
, t .^+^+*= 0: (2>

and we have called J&x) a Bessel's Function or Cylindrical

Harmonic of the zero order.

JA) ~ dx 2L 2. 4^2. 4
2

. 6 2. 4
2.6\8^ \ Kl)

is called a Bessel's Function of the first order, and

is a solution of the equation

dx* x dx+^+(>-^=> (4>

which is the result of differentiating (2) with respect to x.

A table giving values of f (x) and /,(^) will be found at

the end of this chapter.

If we write J&x) for z in equation (2), then multiply

through by xdx and integrate from zero to x, simplifying the

resulting equation by integration by parts, we get

xdj%(x) + fxj,{x)dx
= o,

AT (J
or, sinceJx(x) -

dx

dx

fxj,(x)dx
= xJSx). (5)

If we write J^x) for z in equation (2), then multiply through

by xi
j--i

and integrate from zero to x, simplifying by inte-

gration by parts, we get

or

X

fx(/l*)ydx = f[(/.(*))
+

(/,(*))"].
(6>

'
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If we replace x by fix in (2) it becomes

d2
z

,

1 dz
,

(See (8), Art. 5). Hence z = J^x) is a solution of (7).

If we substitute in turn in (j)J^Kx) and / (/* Lx) for z, mul-

tiply the first equation by x/Q(^tx), the second by x/ (/uKx) t

subtract the second from the first, simplify by integration by

parts, and reduce, we get

JxJl^xKx)J^x)dx

-^KaJljA,a)f^Ka)~}x KaJl^Ka)J^}x,d)\ (8)

Hence if /iK and //t are different roots of /(/*#) = o, or of

/,(/**) = o, or of im/Aim) \J (iia) = o,

a

JxJ^Kx)JX^x)dx = o. (9)

We give without demonstration the following formulas,

which are sometimes useful :

ir

J (x) = - fcos(x cos cp)d(p. (:o)

n

Jx (x)
= -

I sin
2 cos (x cos <p)d<p. (11)

They can be confirmed by developing cos (x cos 0), inte-

grating, and comparing with (1) and (3).

Art. 20. Applications of Bessel's Functions.

(a) The problem of Art. 5 is a special case of the following :

The convex surface and one base of a cylinder of radius a

and length b are kept at the constant temperature zero, the

temperature at each point of the other base is a given function

of the distance of the point from the center of the base
;
re-



216 HARMONIC FUNCTIONS. [CHAP. V.

quired the temperature of any point of the cylinder after the

permanent temperatures have been established.

Here we have to solve Laplace's Equation in the form

or r dr oz

(see Art. 5), subject to the conditions

u = o when z = o,

u = o " r ~ a,

u=f(r)" z = b.

Starting with the particular solution of (1),

u = sinh (/Az)J (Mr), (2)

and proceeding as in Art. 5, we get, if /*,,/*,,//,,.. . are roots

of /.(/**)
= o, (3)

and f(r) = AJ (Mlr) + AJ.{ %r) + AJ^zr) + . . .
, (4)

sinhfos) , sinhOi^)
^\sinh (/^)

y ^r; + "%inh (///)
/'^r) + * ' ' * (5 '

() If instead of keeping the convex surface of the cylinder

at temperature zero we surround it by a jacket impervious to

heat the equation of condition, 21 = when r = a, will be re-

placed by = O when r = a, or if u = sinh (^iz)/ (^ir) by

.

oV^ J = o when r a,
dr

that is, by /xj^a) = o

or /:(/"*) = o. (6)

If now in (4) and (5) /Jt , /*,,/*,,.. . are roots of (6), (5) will

be the solution of our new problem.

(c) If instead of keeping the convex surface of the cylinder

at the temperature zero we allow it to cool in air which is at

the temperature zero, the condition u = o when r = a will be

replaced by \-hu O when r = a, h being the coefficient
or

of surface conductivity.
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If u = sinh (?z)J9(f*r) this condition becomes

P/Af**) + hj^jxr) = o when r = a
y

or H*/i(j<"*) ahj^d) o. (7)

If now in (4) and (5) yw, , //, , yw3 ,
. . . are roots of (7), (5) will

be the solution of our present problem.

It can be shown that

/.(*) - o, (8)

/iW =
> (9)

and xJx(x) \Jlx) = o (10)

have each an infinite number of real positive roots.* The

earlier roots of these equations can be obtained without serious

difficulty from the table for Jix) and /,(#) at the end of this

chapter.

Art. 21. Development in Terms of Bessel's Functions.

We shall now obtain the developments called for in the last

article.

Let Ar) = Ajfar) + A t/&S) + AJ9(Mtr) + ... (1)

^ , ^ , fjtt , etc., being roots of / (/*tf)
= o, or of /,(//#) = o, or

of MaSXM<*) Vo(^) = o.

To determine any coefficient A k multiply (1) by rj (jiikr)dr

and integrate from zero to a. The first member will become
a

frf{r)/.{ntr)dr.

Every term of the second member will vanish by (9), Art.

19, except the term

At
fr\J,(fi,r)Ydr.

JrUAwWr =
jjf4./J&J*t= j([/.(w*)]"+[y.(w*)]')

by (6), Art. 19.

* See Riemann's Partielle Differentialgleichungen, 97.
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Hence A k =
a

The development (i) holds good from r = o to r = a (see

Arts. 6 and 15).

If J*t , Mt , M%> etc -> are roots o{/o (jua)
= o, (2) reduces to

a

'

Ak = 7uh&%J'rJW*Jvyir
' (3)

If Mi, M*y M*> e tc, are roots oi/t(jia) o, (2) reduces to

If /i,, ju3 , M%y etc -> are roots of ^ajx{^a) \J%{j*a)
= o,

(2) reduces to

^ 4 = ^+jJ^UA^)r/rArV'0v)dr- (5)

For the important case where /(r) = 1

a a fika

frf{r)Jl^kr)dr= frjJjA#)dr=l-% fxJQ(x)dx = ^-Jx^kd) (6)

by (5), Art. 19; and (3) reduces to

2

(4) reduces to
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Prob. 29. An iron cylinder one meter long and 20 centimeters

in diameter has its convex surface covered with a so-called non-con-

ducting cement one centimeter thick. One end and the convex

surface of the cylinder thus coated are kept at the temperature zero,

the other end at the temperature of 100 degrees. Given that the con-

ductivity of iron is 0.185 and of cement 0.000162 in C. G. S. units.

Find to the nearest tenth of a degree the temperature of the mid-

dle point of the axis, and of the points of the axis 20 centimeters

from each end after the temperatures have ceased to change.
Find also the temperature of a point on the surface midway be-

tween the ends, and of points of the surface 20 centimeters from

each end. Find the temperatures of the three points of the axis,

supposing the coating a perfect non-conductor, and again, suppos-

ing the coating absent. Neglect the curvature of the coating. Ans.
O Or> Oo-O O O O O O

15 .4 ; 40 .85 ; 72 .8
; 15 .3 ; 40 .7 ; 72 .5 ;

o .0
;
o .0

;
1 .3.

Prob. 30. If the temperature at any point in an infinitely long

cylinder of radius c is initially a function of the distance of the

point from the axis, the temperature at any time must satisfy the

in-
du 3 (d*u 1 du\ t * . \ * 1 1

equation
~- a (- 3 -\ I (see Art. 1), since it is clearly

dependent of z and <p.

Show that

+ Af-"*j%far) + . .
.,

where, if the surface of the cylinder is kept at the temperature

zero, //, , //9 , M3 ,
. . . are roots of J^pc) = o and Ak is the value

given in (3) with c written in place of a
;

if the surface of the cylin-

der is adiabatic /* //,, jtf3 ,
. . . are roots of JJju) = o and A k is ob-

tained from (4); and if heat escapes at the surface into air at the tem-

perature zero /*,, jua , j/t ,
...are roots of pcjjj**) ^JX^C) >

and A k is obtained from (5).

Prob. 31. If the cylinder described in problem 29 is very long
and is initially at the temperature ioo throughout, and the con-

vex surface is kept at the temperature o, find the temperature of a

point 5 centimeters from the axis 15 minutes after cooling has begun ;

first when the cylinder is coated, and second, when the coating is

absent. Ans. 97.2 ;
o.oi.

Prob. 32. A circular drumhead of radius a is initially slightly

distorted into a given form which is a surface of revolution about

the axis of the drum, and is then allowed to vibrate, and z is the

ordinate of any point of the membrane at any time. Assuming that
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must satisfy the equation ^3
= c I ^ + ~-

j,
subject to the con-

ditions z = o when r = a, = o when / = o, and z = /(r) when

/ = o, show that 2 = A^J^y) cos /^<tf + AjXl*/) cos /i9tf + . . ,

where /*,, fi%% f*% , . . . are roots of jX^a) an(* ^* nas tne value

given in (3).

Prob. 33. Show that if a drumhead be initially distorted as in

problem 32 it will not in general give a musical note
; that it may be

initially distorted so as to give a musical note ; that in this case the

vibration will be a steady vibration
;
that the periods of the various

musical notes that can be given are proportional to the roots of

J (x) = o, and that the possible nodal lines for such vibrations

are concentric circles whose radii are proportional to the roots of

/.(*) = o.

Art. 22. Problems in Bessel's Functions.

If in a problem on the stationary temperatures of a cylinder

u = o when z = o, u = o when z = b
y
and u = f{z) when r = a,

the problem is easily solved. If in (2), Art. 20, and in the cor-

responding solution z = cosh (Mz)/ (Mr) we replace M by fit, we

can readily obtain z = sin (/xz)J (/uri) and z = cos (Mz)f (Mri)

as particular solutions of (1), Art. 20; and

and is real.

^T . . knz

fc=i

knz
where Ak =-r I f(z) sin 7- dz (2)

by Art. 9.
>

/ knri\

k ^ k7TZ^\ b I

Hence = "^ ^ sin r- 7 r (3)

is the required solution.



Art. 24.]
lame's functions. 221

A table giving the values ofJ (xi) will be found at the end

of this chapter.

Prob. 34. A cylinder two feet long and two feet in diameter has

its bases kept at the temperature zero and its convex surface at

100 degrees Centigrade until the internal temperatures have ceased

to change. Find the temperature of a point on the axis half way
between the bases, and of a point six inches from the axis, half way
between the bases. Ans. 72. i; 8o.i.

Art. 23. Bessel's Functions of Higher Order.

If we are dealing with Laplace's Equation in Cylindrical

Coordinates and the problem is not symmetrical about an

axis, functions of the form

** f _
**

2r(*+l)L 2'(+l)
'

2\2\{?l+ 1)0+2)

play very much the same part as that played byJ (x) in the

preceding articles. They are known as Bessel's Functions of

the nth. order. In problems concerning hollow cylinders much

more complicated functions enter, known as Bessel's Functions

of the second kind.

For a very brief discussion of these functions the reader is

referred to Byerly's Fourier's Series and Spherical Harmonics ;

for a much more complete treatment to Gray and Matthews'

admirable treatise on Bessel's Functions.

Art. 24. Lame's Functions.

Complicated problems in Potential and in allied subjects are

usually handled by the aid of various forms of curvilinear co-

ordinates, and each form has its appropriate Harmonic Func-

tions, which are usually extremely complicated. For instance,

Lame's Functions or Ellipsoidal Harmonics are used when

solutions of Laplace's Equation in Ellipsoidal coordinates are

required ;
Toroidal Harmonics when solutions of Laplace's

Equation in Toroidal coordinates are needed.

For a brief introduction to the theory of these functions

see Byerly's Fourier's Series and Spherical Harmonics.
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Table II. Bessel's Functions.

X
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Table III. Roots of Bessel's Functions.

n
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Chapter VI.

FUNCTIONS OF A COMPLEX VARIABLE.

By Thomas S. Fiske,

Adjunct Professor of Mathematics in Columbia University.

Art. 1. Definition of Function.

If two or more quantities are such that no one of them,

when any values whatsoever are assigned to the others, suf-

fers any restriction in regard to the values which it can assume

the quantities are said to be "
independent."

If one quantity is so related to another quantity or to

several independent quantities, that whenever particular values

are assigned to the latter, the former is required to take one or

another of a system of completely determined values, the for-

mer is said to be a " function
"
of the latter. The quantity or

quantities upon the values of which the value of the function

depends, are said to be the "
independent variables

"
of the

function.

A function is
" one-valued

" when to every set of values as-

signed to the independent variables there corresponds but one

value of the function. It is said to be " ^-valued
" when to

every set of values of the independent variables n values of the

function correspond.

The "Theory of Functions
"
has among its objects the

study of the properties of functions, their classification accord-

ing to their properties, the derivation of formulas which exhibit

the relations of functions to one another or to their independ-

ent variables, and the determination whether or not functions

exist satisfying assigned conditions.
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Art. 2. Representation of Complex Variable.

A variable quantity is capable, in general, of assuming both

real and imaginary values. In fact, unless it be otherwise

specified, every quantity w is to be regarded as having the

"
complex

"
form u-\-v V I, u and v being real. It is cus-

tomary to denote V I by i, and to write the preceding quan-

tity thus : u + iv. If v is zero, w is real
;

if u is zero, w is a
u
pure imaginary."

A quantity z = x -\- iy is said to vary
"
continuously

" when

between every pair of values which it takes, c
x
= a

x -f- ib
x
and

c
*
= a*~\~ M% i

tne value of z varies in such a manner that x and

y pass through all real values intermediate to a
x
and #

a ,
b

x

and b respectively.

It is usual to give to a variable quantity z = x + iy a graphi-

cal representation by drawing in a plane a pair of rectangular

axes and constructing a point whose abscissa and ordinate are

respectively equal to x and y. To every value of z will corre-

spond a point ; and, conversely, to every point will correspond
a value of z. The terms "

point
"
and value, then, may be inter-

changed without confusion. When z varies continuously the

graphical representation of its varia-

tion, or its
"
path," will be a continuous

line. This graphical representation is

of the highest importance. By means

of it some of the most complicated

propositions may be given an exceed-

ingly condensed and concrete expres-

sion.

By putting x = r cos 0, y = r sin
t where r is a positive real

quantity, the point

z = r(cos 6 -f- i sin 6)

is referred to polar coordinates. The quantity r is called the

absolute value or " modulus
"

of z. It will often be written
(^J,

and 6 will be called the "
argument" of z.
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A function is sometimes considered for only such values of

each independent variable as are represented graphically by the

points of a certain continuous line. In the study of functions

of real variables, for example, the path of each variable is rep-

resented by a straight line, namely, the axis of real quantities,,

or y = o.

Art. 3. Absolute Convergence.

The representation of functions by means of infinite series

is one of the most important branches of the theory of func-

tions. In many problems, in fact, it is only by means of series

that it is possible to determine functions satisfying the condi-

tions assigned and to obtain the required numerical results..

Frequent use will be made of the following theorem.

Theorem. If the moduli of the terms of a series form a

convergent series, the given series is convergent.

Let the given series be W= w
Q -\- wx + . . . -f- wn -\- . . .

in which w = r (cos 6
a+ i sin #

), w, = r
x (cos 0, + i sin #,) . . .

By hypothesis the series R = r + r
x + + rn + is

convergent. Its terms being all positive, the sum of its first m
terms constantly increases with m, but in such a manner as to

approach a limit. The same will be true necessarily of any

series formed by selecting terms from R. The sum of the first

m terms of the series W is composed of two parts,

r cos 6
o + r

x cos 6
X

. . . + rm _, cos 9m.

z{r sin 6 + r
x
sin 6

l + . . . + rm _ x
sin #,_,),

and each of these in turn may be divided into parts which have

all their terms of the same sign. Every one of the four parts

thus obtained approaches a limit as m is increased
;
for the

terms of each part have the same sign, and cannot exceed, in

absolute value, the corresponding terms of R. Hence, as m is

increased, the sum of the first tn terms of W approaches a

limit
;
which was to be proved.

A series, the moduli of whose terms form a convergent

series, is said to be "
absolutely convergent."



Art. 4. J
elementary functions. 229

Prob. i. Show that the series I -+
' +V+ * . . + z

n + . is

absolutely convergent, if
|
z

|
< I.

Art. 4. Elementary Functions.

In elementary mathematics the functions are usually con-

sidered for only real values of the independent variables. In

the case of the algebraic functions, however, there is no diffi-

culty in assuming that the independent variables are complex.
The theory of elimination shows that every algebraic equation

can be freed from radicals. Every algebraic function, there-

fore, is defined by an equation which may be put in a form

wherein the second member is zero and the first member is

rational and entire in the function and its independent variables.

Besides the algebraic functions, the functions most often

occurring in elementary mathematics are the trigonometric and

exponential functions and the functions inverse to them. The

definitions, by which these functions are generally first intro-

duced, have no significance in the case where the inde-

pendent variables are complex. However, the following

familiar series,

z* z* z*
e* = expz= i+z+ + +-+...,

z j . 4 .

z1
z* z

6

C0S2= J __+_+....,

a .9 z .z
1

3 I

'

5 J 7i

which have been established for the case where the variables

are real, furnish most convenient general definitions for exp z,

cos z, and sin z%
these series being absolutely convergent for

every finite value of z. Defining the logarithmic function by
the equation

e\o% z exp (Jog g} ; 2
t

it follows that

a* = ezl s a sa exp(z log a).
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The following equations also are to be regarded as equations,

of definition :

sin 2
tan z
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variables by quantities of moduli less than some determinate

positive quantity 3, the value of the function is altered by a

quantity of modulus less than any previously chosen arbitrarily

small positive quantity e.

A function of one independent variable is said to be con-

tinuous in a given region of the plane upon which its indepen-

dent variable is represented, if it is contiuuous at every point

in that region.

From the principles of limits, it follows that if two functions

are continuous at a given point, their sum, difference, and prod-

uct are continuous at that point. As an immediate conse-

quence, every rational entire function of z is continuous at

every finite point ;
for every such function can be constructed

from z and constant quantities by a finite number of additions,

subtractions, and multiplications.

Let a function of a single independent variable be contin-

uous at c, and let it take at that point the value /, different

from zero. Suppose also that at any other point c-\-Ac\X\z

function takes the value / -\- At. Then

I I At

t + At t t{t+ At)

If it be assumed that
|

At
|
<

|

/
|,
the modulus of the preceding

difference cannot exceed

\t\(\t\-\At\y

and will, therefore, be less than e if

up
\jt\<

l+e\t

Hence if a function is continuous and different from zero

at a point c, its reciprocal is also continuous at c. It follows

at once that if two functions are both continuous at c, their

ratio is continuous at c, unless the denominator reduces to zero
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at that point. But every rational function of z may be expressed
as the ratio of two entire functions. It is therefore continuous

for all values of z except those for which its denominator

vanishes.

Consider the function expz, s

pZ-\-b.Z gZ

Hence if \Az\<\,

\AZ \'
,

but the limit of the third member is zero when \Az\ ap-

proaches zero. Hence exp z is continuous for all finite values

of z.

Prob. 5. Show that cos z and sin z are continuous for all finite

values of z.

Prob. 6. Show that tan z is continuous in any circle described

about the origin as a center with a radius less than \n. o^ 2~-

Art. 6. Graphical Representation of Functions.? -Functions

It was shown in Art. 2 that a plane suffices for the complete

graphical representation of the values of an independent vari-

able. In the same way it is convenient to use a second plane

to represent graphically the values of any one-valued function.

For example, if w =jf[z) be such a function, to each point

x -f- iy of the independent variable will correspond a point

u -f- iv of the function. This point u -f- iv is called the u
image

"

of the point x -f- iy. If w is a continuous function of z, then

every continuous curve in the ^-plane will have an image in

the w-plane, and this image will be also a continuous curve.

Consider the expression u -f- iv = x"
1

-f- y
1

-f- 2ixy. Here
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Show that no two curves

u = x* -f- y and v = 2xy. Since to every value of z corre-

spond determinate values of x and y y

and consequently determinate values

of u and v, this expression falls un-

der the general definition of a func-

tion oiz. It is evidently continuous.

Every straight line x = / parallel to

the axis of y is converted by means

of it into a parabola v 1 = \f{u f).

Prob. 7. Find the family of curves

into which the straight lines parallel to

the axis of y are converted by means of

the function u + = x* ~~
^" + 2txy.

of this family intersect.

Art. 7. Derivatives.

Let tt> = f(z) be a given function of *. If // is an " infini-

tesimal," that is, a variable having zero as its limit, and if the

expression

h

has a finite determinate limit, remaining the same under all

possible suppositions as to the way in which //approaches zero,

this limit is said to be the " derivative" of the function^) at

the point z. In this case w f{z) is said to be "
monogenic

"

dvu
at z. The derivative is written f'{z) or -7-. A function is said

to be monogenic in a region of the plane of the independent

variable if it is monogenic at every point of that region.

Consider now the circumstances under which a function

w u + iv may have a derivative at the point z = x -\- iy.

If z be given a real increment, x is changed into x -f- Ax, while

y is unaltered, so that Az = Ax
;
and

Aiv

~Az~

Au Av
~
Ax ' Ax'
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If, on the other hand, z is given a purely imaginary incre-

ment, Az = iAy, and

Azv _ Au Av
Az

' "

iAy Ay
'

If the second members of these equations approach deter-

minate limits as Ax and Ay approach zero, and if these limits.

are equal,

du, -9^___ du dv

dx^
l

dx~
z

dy dy

Hence, equating real and imaginary parts,

du _ dv dv _ du

dx~dy' dx~~~dy'

which are necessary conditions for the existence of a derivative.

It can be shown that these conditions are also sufficient.

For let the increment of the independent variable be entirely

arbitrary, no supposition being made as to the relative magni-

tudes of its real and imaginary parts. Then the differential of

the function, that is, that part of the increment of the function

which remains after subtracting the terms of order higher than

the first, is

W dx' \dy dy I
'

Hence
(
du .dv\ (du dv\dy V|

,1\

du + idv _ \Yx
+ t

^x)
+

\dJ
+%)^ . 3f

l

dx+ idy I+ ;i i"*flt
dx *t

which, by virtue of the conditions written above, is equal ta

either member of the equation

du .dv_ _ _ -du dv
dx ' dx dy dy

The value thus obtained is independent of -i or, what is the
dx

same thing, of the direction of approach to the point z. The
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existence cf a derivative of the function zv depends, therefoie,

only on the existence of partial derivatives -*-. ^, -r-, ;rJ r dx dx ay dy

satisfying the specified equations of condition.

The same equations of condition express the fact that

w = u -\- iv, supposed to be an analytical expression involving

x and y, and having partial derivatives with respect to each,

involves z as a whole, that is, may be constructed from z by
some series of operations, not introducing x or y except in the

combination x -\- iy. In other words, they indicate that x and

y may both be eliminated from w = <p(x, y) by means of the

equation z = x -\- ty. This property, however, is not sufficient

to define a function as monogenic, for not every function which

possesses it has a derivative with respect to z.*

A monogenic function is necessarily continuous
; that is,

the existence of a derivative involves continuity. For, if

limit "^
\

^-^ =/(*)>

it follows that

where rj approaches zero with //. Hence f(z) is the limit of

f(z-\-h) when h approaches zero, or f(z) is continuous at the

point z.

The following pages relate almost exclusively to functions

which are monogenic except for special isolated values of z.

Functions which are discontinuous for every value of the inde-

pendent variable, and functions which are continuous but admit

no derivatives, have been little studied except in the case of

real variables.-)*

* For an interesting illustration of a non-monogenic function constructed

from z by a series of arithmetical operations, see the expression given at the

bottom of page 298.

fin this connection see G. Darboux, Sur les fonctions discontinues, An-

nates de l'cole Normale, Series 2, Vol. 4 (1875), PP- 51-112. For a systematic

treatment of functions of a real variable, see the German translation of Dini's.

treatise by Luroth and Schepp, Leipzig, 1892.
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Art. 8. Conformal Representation.

Let z start from the point z%
and trace two different paths

forming a given angle at the point z
>
and let z

x
and z% be arbi-

trary points on the first and second paths respectively. Then

z
x

z = r,(cos 0, -f- i'sin
t )
= r

x
ei6\

where r
x
denotes the length of the straight line joining z and

z
t , and 0, denotes the inclination of this line to the axis of

reals. In the same way, for the point #
a , there is an equation

z% z = r
3 (cos 2+ 1 sin

9)
= rj*

9:

If now w is a. one-valued monogenic function of z, in the

region of the ^-plane considered, to the points z
, zx > gt

corre-

spond points w ,
w

1 ,
w3 ;

and for these points can be formed

the equations

w
x

w = p/*
1

, w, w = p/f*.

From the supposition that w is monogenic, it follows at

once that, when z
x
and z% are assumed to approach zQy

limit v^Z^i = Hm it ^zJHs.
z, z zx z

If the members of this equation are not equal to zero, it may
be put in the form

limit W
3

W limit
*!*.
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or

Hence

limit &**- = limit *V**-H
A. ^

a

? limit (0,- 2)
= limit (0,- f) ;

and the images in the w-plane of the two paths traced by z

form at w an angle equal to that at z%
in the ,2-plane. Accord-

ingly, if z be supposed to trace any configuration whatever

in a portion of the ,2-plane in which is determinate and not
dz

equal to zero, every angle in the image traced by w will be

equal to the corresponding angle in the -s'-plane. If, for exam-

ple, such a portion of the w-plane be divided into infinitesimal

triangles, the corresponding portion of the -plane will be

divided in the same manner, and the corresponding triangles

will be mutually equiangular. Such a copy upon a plane, or

upon any surface, of a configuration in another surface is called

a " conformal representation."

The modulus of the derivative
dw
~dz

= limit
Aw

is the
Az

"
magnification." Its value, which, in general, changes from

point to point, may be obtained from the relations

dw
dz
-+'-'+'
"
dx dy dy dx

The theory of conformal representation has interesting ap-

plications to map drawing.*

* For the literature of the subject, see Forsyth, Theory or Functions,

p. 500, and Holzmiiller, Einfuhring in die Theorieder isogonalen Verwandschaf-

ten und der conformen Abbildungen, verbunden mit Anwendungen auf mathe-

niatische Physik.
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Art. 9. Examples of Conformal Representation.

Case I. Let w=z s+c. This function is formed from the

independent variable by the addition of a constant. Putting
for w, z, and c, respectively, u -f- ivt

x -\- iy and a -f- tb, one ob-

tains

u = x -f- a, v =y -J- b.

Any configuration in the ^-plane appears, therefore, in the

seaplane unaltered in magnitude, and is situated with respect to

the axes as if it had been moved parallel to the axis of reals

through the distance a and parallel to the axis of imaginaries

through the distance b. The following diagrams represent the

transformation of a network of squares by means of the rela-

tion w = z -\- c.

Case II. Let w = cz. Writing w pe**, z = reie
,
and

c r
x^\ the following equations result :

p= r
tr, 0=0, + *.

The origin transforms into the origin, all distances measured
from the origin are multiplied by a constant quantity, and
all straight lines passing through the origin are turned through
a constant angle. See the following diagrams.
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Case III

becomes

Let zv = e*. Writing z = x -f- iy, the function

u - V
zv = e*eiy = ^(cosjy + i sin y). \ t

Every straight line ^ = /, parallel to the axis of y is trans-

formed into a circle p = J* described about the origin as a

center, the axis of y becoming the unit circle. Points to the

right of the axis of y fall without the unit circle, while points

to the left of this axis fall within. Every straight line jc = /

parallel to the axis of x becomes a straight line v/u = tan /
9

passing through the origin. The accompanying diagrams*

exhibit in a simple manner the periodicity expressed by the

equation
exp (z -f 2nni) exp (z),

where n is any positive or negative integer.

To every point in the w-plane, excluding the origin, corre-

spond an infinite number of points in the ^r-plane. These

points are all situated on a straight line parallel to the axis of

*The figures of this and the following example are taken from Holzmilller's

treatise.
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y, and divide it into segments, each of length 27t. If z be one

of these points, the general value of the inverse function is

log VD == if -}" 2/ZZ7T,

where n is any positive or negative integer.

If any straight line beginning at the origin be drawn in the

w-plane, there will correspond in the ,2-plane an infinite number

27T-

37T
2

M

of straight lines parallel to the axis of x, dividing that plane

into strips of equal width. To any curve in the w-plane

which does not meet the line just drawn, will correspond in

the .s-plane an infinite number of curves, of which there will be

one in each strip.

Case IV. Let w = cos 8. Writing w = u -j- tv, z = x -\- iy>

and employing as equations of definition cos {iy) = cosh^,

sin {iy)
= i sinhjj/, the given function takes the form

u -\- tv = cos^r coshjj/ i sin x s'mhy.

Hence u = cos x coshjj, v = sin^r sinh/.
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Any straight line, x = tv parallel to the axis of y, is trans-

formed into one branch of a hyperbola,

= I,
cos /, sin t

x

having its foci at the points + I and i. Any straight line,

y = t% , parallel to the axis of x< is transformed into an ellipse,

+ =
I.

cosh"/,
'

sinh /,

having its foci at the same points, any segment of the straight

line equal in length to 2n corresponding to the entire curve

taken once. By means of these confocal conies, the w-plane

is divided into curvilinear rectangles, the conformal represen-

tation breaking down only at the foci, where the condition

that -^ should be different from zero is not fulfilled. The
dz

periodicity of the function, expressed by the equation
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tf-plane serving to determine its image in the w-plane as an

intersection of orthogonal curves.

Case V. Let w = z
3

. Writing w = u + zv, z = x + iyy

the relations

u = xa

3*/, v $xy y
follow at once. . If one of the variables x, y be eliminated from

these two equations by means of the equation Ix + my + n = o,

representing a straight line in the s-plane, equations are ob-^
tained representing a unicursal cubic in the w-plane.

'

kvulIP" By putting / = p(cos + ^ sin 0), s = r(cos 6 -\- i sin #), (
the relations p = r\ = 3#, are obtained. Hence the

circle

ra 2ar cos 6 + #a = c*

1/frwtVr*

gives the curve

pi 2#p* cos - + a* = c*,

which enwraps three times the point corresponding to the

center. The accompanying figure represents this transfor-

mation, the straight line feg giving the curve feg.

dw
dz

To each point in the w-plane, excluding the origin, at which

= o and the conformal representation is not maintained,
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there correspond three points in the #-plane, having for their

00 -|- 2n 0+4^
arguments

3

:

, respectively. Any straight line
3 3

drawn from the origin in the w-plane will have, therefore, three

images in the ^-plane, viz., three straight lines diverging from

the origin, and dividing the plane into three equal regions.

Any continuous curve in the w-plane not meeting the line just

drawn will be represented in the ,2-plane by three curves, of

which one will be situated within each of these regions. In the

figure here given are exhibited the three conformal represen-

tations of a square formed in the w-plane by lines u = t
lt
u =

tv v = t
lt
v = /

2 , parallel to the axes.

If the relation between w and z be reversed, and z be

taken as a function of w, z will be a three-valued function, its

values giving rise to three branches which will remain distinct

and continuous except when w becomes equal to zero.

Prob. 8. If w = z -\ ,
show that circles in the 2-plane having

z

a common center at the origin transform into confocal ellipses.

z i
Prob. 9. If w =

+ *
-, show that the axis of reals in the 2"-plane

transforms into the circle \w\ = 1, and the upper half of the s-plane

into the interior of this circle.
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Art. 10. Conformal Representation of a Sphere.

Let OPO' be a sphere having its diameter 00' equal in

length to unity. Con-

struct tangent planes at

^ O and O'. Draw in

the tangent plane at

O rectangular axes Ox
and Oy ;

and in the

other plane draw as

axes O'u, parallel to Ox
and measured in the

same direction, and 0'ir

parallel to Oy but meas-

ured in a contrary di-

rection. Join any point

z in the plane xOy to

O' by a straight line, and let 0'z meet the sphere in P. Draw

<9Pand produce it to meet the plane uO'v in w.

From the similar triangles O
'

Oz and 00'w

Oz 00' n nl 757Pt i-_ = _-, or Oz.Ow = 00 ;OO O w

that is, |
z

|
.

|
w

|

= rp = I.

To an observer standing on the sphere at Ol
rotation about

00' from O'u toward O'v is positive, while to an observer

standing on the sphere at O such a rotation is negative.

Hence

/_xOz= /_uO'w, or 6 = 0.

The following equation results :

wz = p?v
z
'

(*+ fl) = I.

The w- and ^-planes are therefore conformal representa-

tions of one another. Any configuration in one plane can be

formed from its image in the other by an inversion with respect
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to the origin as a center, combined with a reflection in the axis of

reals. Such a transformation was termed by Cayley a "
quasi-

inversion." By it points at a great distance from the origin

in one plane are brought near together in the immediate neigh-

borhood of the origin in the other plane.

Since the line O'Pz makes the same angle with the plane

tangent to the sphere at P as with the plane xOy, any spherical

angle having its vertex at P is projected into an equal angle at

z. The sphere is thus seen to be related conformally to the

plane xOy, and it must be also so related to the plane uO'v.

\. ^ The representation of the sphere upon a tangent plane in

jjl
uthe manner described above is termed a "

stereographic pro-

\jlmA jection." When to this representation is applied a logarithmic

JU \ transformation, that is, one inverse to the transformation

V ./. described in Case III of the preceding article, the so-called .

" Mercator's projection" is obtained, ./. ^ *Jyi 'Am****.-

Art. 11. Conjugate Functions.

The real and imaginary parts of a monogenic function,

w = u+ ivy have been shown to satisfy the partial differential

equations
9 _ dv dv__ _du
d*
~

dy d*~ dy

At any point, therefore, where u and v admit second partial

derivatives, one obtains

dx^~df-' 9? + cy- ;

that is, the functions u and v are solutions of Laplace's equa-
tion for two dimensions. Any two real solutions / and q of

this equation, such that p-\-iq is a monogenic function of

x -f ty, are called "
conjugate functions." * Thus the examples

of Art. 9 furnish the following pairs of conjugate functions :

*
Maxwell, Electricity and Magnetism, 1873, vol. 1, p. 227.
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x -\- a, y -\- b ; r
x
r cos (0l -j- 6), r

x
r sin (dx + 0) ;

e
x
cosj, t* wny ;

cos x cosh y, sin x sinhy ;
^r

3

3^y, 3^rjA y. The second

pair is expressed in polar coordinates, but may be transformed

to cartesian coordinates by means of the relations

r = Vx*+y\ cos 6 = -_ = sin 6 = y -

If one of two conjugate functions be given, the other is

thereby determined except for an additive constant. Let u y

for example, be given. Then

dv = dx -4- dy
dx dy

du, du,= dx -\ ay.
dy

T
dx

J%

and therefore the value of v is

The equations u = clt v = c^> obtained by assigning con-

stant values to two conjugate functions, represent in the

w-plane straight lines parallel to the coordinate axes. It

follows that the curves which these equations define in the

,2-plane intersect at right angles. Consequently, by varying
the quantities c

x
and c two orthogonal systems of curves are

obtained
;
and c

x
and

a may be taken as orthogonal curvilinear

coordinates for the determination of position in the ^-plane.

Prob. io. Show that if p and q are conjugate functions of u and

v, where u and v are conjugate functions of x andy,fi and q will be

conjugate functions of x and y.

Prob. ii. Show that if u and v are conjugate functions of X and

y\ x andjy are conjugate functions of u and v.

Art. 12. Application to Fluid Motion.

Consider an incompressible fluid, in which it is assumed

that every element can move only parallel to the ^-plane, and

has a velocity of which the components parallel to the coordi-
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nate axes are functions of x and y alone. The whole motion

of the fluid is known as soon as the motion in the .s-plane is

ascertained. When any curve in the ,2-plane is given, by the

"flux across the curve"* will be meant the volume of fluid

which in unit time crosses the right cylindrical surface having

the curve as base and included between the ^-plane and a par-

allel plane at a unit distance.

The flux across any two curves joining the points z and z

is the same, provided the curves enclose a region covered with

the moving fluid. For, corresponding to the enclosed region,

there must be neither a gain nor a loss of matter. Let z be

fixed, and z be variable. Let ip denote the flux across any curve

z z, reckoned from left to right for an observer stationed at z

and looking along the curve toward z. If /, m be the direction

cosines of the normal (drawn to the right) at any point of the

curve, and /, q be the components, parallel to the axes of the

velocity of any moving element, the value of tp will be

tp
= /

z

{lp -f- mq)ds,
tA

where the path of integration is the curve joining z and z.

The function tp is a one-valued function of z in any region

within which every two curves joining z to z enclose a region

covered with the moving fluid.

If z moves in such a manner that the value of tp does not

vary, it will trace a curve such that no fluid crosses it, i.e., a

liMi " stream-line." The curves tp = const, are all stream-lines, and
*

ip is called the " stream-function." If p and q are continuous,

and if z be given infinitesimal increments parallel to x and y
respectively, one obtains

4^y I

If now the motion of the fluid be characterized, as is the

* Lamb's Hydrodynamics (1895), p. 69.



248 FUNCTIONS OF A COMPLEX VARIABLE. [Chap. VI.

/

case in the so-called " irrotational" motion,* by the existence

of a velocity-potential 0, so that
j

.V'^

\ 30 90

the following equations result :

a _ a^ d _ 90
a* "ay a*~

~

a^'

Hence -(- *^ is a monogenic function of ^r -j- iy. The curves

= const., which are orthogonal to the stream-lines, are

called the "equipotential curves."

Consider, as an example, the motion corresponding to the

functionf w = z*. The equipotential curves are given by the

equations

<b= u = x3

^xy=z const.,

the stream-lines by

Y'' the equations

'v|n
- v = 3*y y

%
const.

In the following fig-

ure the stream-lines

are the heavy lines,

while the equipo-

tential curves are

dotted.

The fluid moves

in toward the origin,

which is called a "
cross-point," from three directions, and

flows out again in three other directions. At the cross-point

the fluid is at a standstill, since at that point the velocity, for

which the general expression is

pis

V+'
* In irrotational motion each element is subject to translation and pure

strain, but not to rotation.

f F. Klein : Riemann's Theory of Algebraic Functions ; translated by-

Frances Hardcastle (1893), p. 3.
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is equal to zero. The stream-lines in the figure represent the

motion of the fluid in each of six different angles, as if the fluid

were confined between walls perpendicular to the ^-plane.

It is of importance to note that if the function considered

be multiplied by i, the equipotential curves and stream-lines

are interchanged, since the function <p-\-itp then becomes

tp -f i<p.

An example of particular interest is

w = u log . > 14 2. c*w*<**?r

dc 1^-

Let z a = r/*, z -j- a = r
9^>; then

=
/i log -i, tf = n{6 x a).

The curves u = const., v = const, form two orthogonal sys-

tems of circles, either of which may be regarded as the stream-

lines, the other constituting the equipotential curves.

The velocities are everywhere, except at the points a,

finite and determinate. If the circles rjr%
= const, be taken

as the stream-lines, each of the points a is a "
vortex-point."

If the circles 0, -0a
= const, be taken as the stream-lines, one
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of the points a is a "source," the other a "sink." In the

latter case, besides the hydrodynamical interpretation, a very

simple electrical illustration is afforded by attaching the poles

of a battery to a conducting plate of indefinite extent at two

fixed points of the plate.

As another example may be taken the relation w =. cos z~

As has been shown, the curves x = const, form a system of

confocal hyperbolas, while the curves y = const, form an

orthogonal system of ellipses. Either system may be regarded
as stream-lines. In one case the motion of the fluid would be

such as would occur if a thin wall were constructed along the

axis of reals, except between the foci, and the fluid should be

impelled through the aperture thus formed. In the other case

the fluid would circulate around a barrier placed on the axis of

reals and included between the foci.

Besides their application to fluid-motion, conjugate func-

tions have important applications in the theory of electricity

and magnetism
* and in elasticity/)-

Art. 13. Critical Points.

Let w be any rational function of z. It can be written in

the form

where f(z) and <p (z) are entire and without common factors.

This function is finite and admits an infinite number of suc-

cessive derivatives for every finite value of z, except the roots

of the equation (z)
= o. Let a be such a root. Then the

reciprocal of the given function is finite and admits an infinite

number of successive derivatives at the point a. Such a point

*
J. J. Thomson, Recent Researches in Electricity and Magnetism (1893),

p. 208.

+ Love, Theory of Elasticity (1892), vol. 1, p. 331.
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is called a "pole." Any rational function having a pole at a

can be put by the method of partial fractions in the form

where A lt . . ., A k are constants, A k being different from zero,

and ip(z) is finite at the point a. The integer k is said to be

the "order" of the pole, and the function is said to have for

its value at a infinity of the k\\\ order. In accordance with

the definition of a derivative, w does not admit a derivative at

a. From the character of the derivative in the immediate

neighborhood of a, however, the derivative is sometimes said

to become infinite at a.

The trigonometric function cot has a pole of the first

order at every point z = nnt, m being zero or any integer posi-

tive or negative.

The function w = log (z a) has for every finite value of

z, except z = a, an infinite number of values. If z a is writ-

ten in the form Rei&
,

w = logR -\- z(Q -f- 2m7t)j

where log R is real, and m is zero or any positive or negative

integer. If z describes a straight line, beginning at a, S will

remain fixed, but R will vary. The images in the w-plane will

therefore be straight lines parallel to the axis of reals, dividing

the plane into horizontal strips of width 2n. If now the ^-plane

is supposed to be divided along the straight line just drawn,

and z varies along any continuous path, subject only to the

restriction that it cannot cross this line of division, there will

be a continuous curve as the image of the path of z in each

strip of the w-plane. Each of these images is said to corre-

spond to a "branch" of the function, or, expressed otherwise,

the function is said to have a branch situated in each strip.

The line of division in the ^-plane, which serves to separate

the branches from one another is called a " cut."
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At the point z = a no definite value is attached to the

function. As z approaches that point the modulus of the real

part of the function increases without limit, while the imagi-

nary part is entirely indeterminate.

Let z be an arbitrary point, distinct from a, and let

log R -j- t@ -\- 2mni

be any one of the corresponding values of the function. Sup-

pose that z starts from z and describes a closed path around

the point a, the values of the function being taken so as to

give a continuous variation. Upon returning to the point z

the value of the function will be

log R + z& + 2(m + \)ni,

or log R + t@ + 2{m i)7ti,

according as the curve is described in a positive or negative

direction. By repeating the curve a sufficient number of times

it is evidently possible to pass from any value of the function

at z to any other. When a point is such that a -s'-path en-

closing it may lead in this manner from one value of a function

to another value, it is called a "
branch-point." In the case

of the function here considered, the point z = a is called

a "logarithmic branch-point," or a point of "logarithmic

discontinuity."

The function w = log ~-\ y
where f{z) and (p(z) are entire,

(p{z)

has a point of logarithmic discontinuity at every point where

either/^) or <p(z) is equal to zero. For, writing

f(z) = A(z - atYi* - mfr . . .

<j)(z)
= B{z btf^z brf* . . .

the value of w may be written

w log
- + 2pm log {z

- am) 2qn log (z bn).
$ m n
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1

Take now the function w = e*. It has a single finite value

for every value of z except z = o. If z is supposed to ap-

proach zero, the limit of the value of the function is indeter-

minate.

For let / + iq be perfectly arbitrary, and write

If now a -f- ib is the reciprocal of p -\- iq, so that

. h
~~
"?

the preceding equation may be written

. _i_ h x%
r.

But whatever the value of the integer m, q + 2mit may be

substituted for q without altering the value of c -f- id, and hence

both a and may be made less than any assignable quantity.

The given function e* therefore takes the value c -f- id at points

a 4- ib indefinitely near to the origin. A point such that, when

z approaches it, a function elsewhere one-valued tends toward

an indeterminate limiting value is called an " essential sin-

gularity."

Prob. 12. Show that for the function e^-* z a is an essential

singularity.
i_

Prob. 13. The function e z* considered as a function of a real

variable is continuous for every finite value of z, and the same is

true of each of its successive derivatives. Show that when it is

regarded as a function of a complex variable, z = o is an essential

singularity.

In order to illustrate still another class of special points

take the function

IV = V(z - aX* a^)...{z an).
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This function has at every finite point, except aiy a^, . . .
,
atli

two distinct values differing in sign. At these points, however,

it takes but a single value, zero. From each of the points

al9 at , . . . , au let a straight line of indefinite extent be drawn in

such a manner that no one of them intersects any other, and

suppose the ^-plane to be divided, or cut, along each of these

lines. Along any continuous path in the -S'-plane thus divided

the values of the function form two distinct branches.

For, writing

z a
1
= r

x
eiQ

i, z a
2
= r^e

i6
*, . . . , z an = rne'

en
,

the function takes the form

w = Vr
1
r
2 . . rn ei

No closed path in the divided plane will enclose any of the

points alt a9 , . . . , an ,
and the quantities l , 3 ,

. . .
, n ,

after

continuous variation along such a path, must resume at the

initial point their original values. No such path, therefore, can

lead from one value of the function at any point to a new
value of the function at the

same point. If, however, the

cuts are disregarded and z

traces in a positive direction,

a closed curve including an odd

number of the points a
x ,

<?
2 ,

. . . , a, and not intersecting

itself, then an odd number of

the quantities X , a , . . .
,
6n are each increased by 27r; and

the value of the function is altered by a factor ^BHU*^ and

so changed in sign. In the same way any closed path de-

scribed about one of these points, and enwrapping it an odd

number of times, leads from one value of the function to

the other. On the other hand, a simple closed path enclosing

an even number of these points, or a closed path which en-

closes but one of the points, enwrapping it an even number of

times, leads back to the initial value of the function. It fol-
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lows that each of the points a
x ,

#a , . . . ,
aH is a branch-point.

Any point in the ^-plane, closed paths about which lead from

one to another of a set of different values of a function, the

number of values in the set being finite, is called an "
algebraic

branch-point."

As a further illustration, consider the function

w = zi
-f- {z a)^,

which is a root of the equation of the sixth degree,

w* t>ziv" 2(z a)zu* + 3<s^
2

z(z a)w + (* of
3 =o.

The function has at every point, except z = o and z = a,

six distinct values. Six branches are thereby formed which

can be completely separated from one another by making cuts

from the points z = o and z = a to infinity. Putting w for the

cube root of unity, these six branches can be written

1/2 , , si/8 V2
i / \V3w

x
z -j- (z a)

'
,
w

%
z -\- (z a)' ,

Hf, ss s
f*

-\- go{z ay, w4
= ^1/2

-f- a? {z a)
1/3

,

V2
! 1! X

1
/
3 V2

I 2/ \V3W
b
= Z ' + V* ^) We

= ^- + G?
9

( )
.

The branches w, and w
3 ,
w

3
and zt\, w&

and w
6
are interchanged

by a small closed circuit described about z =o, while a small

circuit described about z a permutes cyclically the branches

w wtf w%%
and also the branches w w

A ,
w

6
.

All of the special points examined above, poles, points of

logarithmic discontinuity, essential singularities, and branch-

points, are called critical points. In fact, a function, or a

branch of a function, is said to have a "
critical point

"
at each

point where it fails to have a continuous derivative,* or about

which as a center it is impossible to describe a circle of deter-

minate radius within which the function, or branch, is one-

valued.

Any point not a critical point is called an "
ordinary point."

*
Continuity and, therefore, finiteness of the function are implied in the

existence of a derivative.
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An ordinary point at which a function reduces to zero is called

a "zero" of the function.

If in a certain region of the ^-plane there are no critical

points for a given function, the function is said to be "
syneo

tic" or "
holomorphic

"
in that region. If in a certain region

^hfa (
the only critical points are poles, the function is said to be
"
meromorphic

"
in that region. Under similar conditions a

branch of a function is also described as holomorphic ot

meromorphic.

Prob. 14. When w and z are connected by the relation w g =
(z Kf show that if z describes a circle about h as a center, w
describes a circle about g as a center, an angle in the 2-plane hav-

ing its vertex at h is transformed into an angle in the w-plane f

times as great and having its vertex at gt
and that z = h is a branch-

point of w except when t is an integer.

Art. 14. Point at Infinity. Ou-i

In determining the limiting value of a function when the

modulus of the independent variable z is increased indefinitely,,

it is usual to introduce a new independent variable z' by the

relation z = i/z\ and consider the function at the point z' = o.

This is equivalent to passing from the .s'-plane to another plane,,

the ^'-plane, related to the former by the geometrical construc-

tion described in Art. 10. It is often very convenient, however,,

to go further and to substitute for the -plane the surface of the

sphere of unit diameter touching the ^-plane at the origin. No-

difficulty is thus introduced since, as explained in the article

just cited, any configuration in the ^-plane obtains a conformal

representation upon the sphere; and the advantage is gained

that the entire surface upon which the variation of the inde-

pendent variable is studied is of finite extent. The point of

the sphere diametrically opposite to its point of contact with

the -plane coincides with the point written above as z' = o.

It is called the point at infinity, z = 00
, since a point on the

sphere approaches it at the same time that its image in the

^-plane recedes indefinitely from the origin.
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The point at infinity may be either an ordinary or a critical

point. For the function e*f
for example, it is an ordinary

*'-

point, since e* = f'. For a rational entire function of the th

degree it is a pole of order n. Consider it for the function

\/(z a
x)(z a

9) . . . (z aH), discussed in the preceding article.

Let a circle of great radius be described in the ^-plane inclosing

all the branch-points a
x ,

a
7 , . . .

,
an . Its con formal representa-

tion on the sphere will be a small closed curve surrounding the

point z = oo . This point must, therefore, be regarded as a

branch-point or not, according as the function changes value or( y
not when the curve surrounding it is described, that is accord-

ing as n, the number of finite branch-points, is odd or even.

When the point at infinity is taken into account, then, the

total number of branch-points of this function is always even.

The character of the point z = oo for this function can be de-

termined directly, by changing z into i/z' and considering the

point z' = o.

(p(z)
Prob. 15. Show that z = 00 is an ordinary point for -77-7 > where

<p(z) and rp(z) are rational and entire if the degree of <p(z) does

not exceed that of ip(z).

Art. 15. Integral of a Function.

Let w =/(z) be a continuous function of a complex vari-

able z, and suppose z to describe a continuous path L from

the point z to the point Z. Let a series of points z
t , z ... ,zn

be taken on L, and let /,/,,..., / be points arbitrarily chosen

on the arcs z z
lf
z

x
z . . .

,
znZ respectively. Form the sum

S*.'fc
-

*.)A*.) + (*.
- *VW + + (*- zn)f{tn).

If now the number of points z
lt

. . ., zn be increased indefi-

nitely in such a manner that the length* of each of the arcs

* It is assumed in regard to every path of integration that the idea of length

may be associated with the portion of it included between any two of its points,

or, what is the same thing, that the path is rectifiable. This condition is evi-

dently satisfied if the current coordinates x and^j/ can be expressed in terms of
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z z
1 ,z1

z
a , ...,znZ approaches zero as a limit, the sum 5 ap-

proaches a finite limit which is inde-

pendent of the choice of the points z
lt

z ..., zn and /
, /,,..., tn .

For take any other sum

(*.'-*,W)+...

formed in a similar manner. Suppose
for the sake of greater definiteness

that the points #,,... and */, . . . follow one another on the

line L in the order

and form a third sum

in which both series of points occur. It may be shown that as

the number of points in each of the series * . . . and */, ... is

increased, the differences S" S and S" Sr both approach

zero, from which it follows that the difference S S' has a

limit equal to zero. For example, the difference S" 5 has

the value

<?L $H*> - *.)[/(r.) -At.)l+W - *,>I/W -Atil
+W -

<)[/(r,)
-Ml + . .

^.,- 2'JDi
If M denotes the upper extreme of the quantities fc* -2-*)f

l/W -M)\, \A*,) -m\. \M) -M)\
the modulus of S" S will be less than

7l/[!^ 1 -^| + |<-5r 1 H-|<-Vi+...].

dx dy
any parameter t so that and are continuous. For then the integral

/ 4/akr
2

-f- dy
%
is finite. See, in this connection, Jordan, Cours d'Analyse, 2d

Edition, Vol. I., p. 100.
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But \zx
z

\

is equal to the chord of the arc z^z^ and must

therefore be less than or equal to this arc, and a similar result

holds for each of the quantities | *,'
z

x \
,

|

*t
'

*,' |
,

. . . Hence

\S"-S\<M/t

where / denotes the length of the path of integration. When
the number of points of division on the line L is increased, the

differences

/(n) - AU\ /0.) - /(',). /W -
A*,),

approach zero, since f(z) is continuous, M accordingly
decreases indefinitely and the difference S" S approaches
zero.

The limit, the existence of which has just been demon-

strated, is called the integral of f{z) along the path L. It is

written I f(z)dz. The definition here given is similar to that

given for the integral of a function of a real variable. It is

unnecessary to specify the path of integration when the inde-

pendent variable is restricted to real values, since in that case

it must be the portion of the axis of reals included between

the limits of integration.

The following well-known principles, applicable to the case

of a real independent variable, may be readily extended to the

general case :

1. The modulus of the integral cannot exceed the length of

the path of integration multiplied by the upper extreme of the

modulus of the function along that path.

2. The independent variable may be altered by any equa-
tion of transformation, but L', the path of integration in the

transformed integral, must be such that it is described by the

new variable while z describes L.

3. If F(z) is any one-valued function having everywhere

f(z) for its derivative, the equation

fjWz = F(Z)-F(z^

must be true.
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To prove the third principle, write F{Z) F(z )
in the

form

F[Z)-F{Zl,)+F{zu)-F(Zn _,) + . . . +F(s,)-F(z;)+F(z,)-F(za).

Since the derivative of F(z) \sf(z),

F(*m+l)
-

F{zm)
= [/(*) + tjm](zm+1

- zm),

where
t]m has zero for its limit when zm+1 is made to approach

zm . Hence

F(Z) F(z )
= limit 2f(zm)(zm+1 zm) -f limit 2r}m(z l+1

zm) ;

or, since the second term of the right-hand member is equal

to zero,

F{Z)-F{z,) =fLf{z)dz.
If no function F{z) fulfilling the preceding conditions is

known, the value of the integral requires further investi-

gation.

Consider as an example the integral / -

2 taken from the

point z = I to the point z = I, the path of integration being

the upper half of the circumference of a unit circle described

about the origin as a center. Writing z = exp (iff),
z will

describe the required path while 6 varies from n to o.

The equations -, = e~ 2iB
,

dz ieiedd,

dz = ie-dd = i cos dd + sin 6 dd = id (sin 6)
- d (cos 6),z

follow at once. Hence for the path specified

+ 1 J

C = i Cd (sin 6) Cd (cos d)
= 2.

_1 IT V

The application of the direct and more familiar method

gives the same result :

J z*
~~

L z J, =I

"~"

L zj s= _i~
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For a path along the axis of reals between the limits of

integration this result is unintelligible. The discontinuity of

dz
the differential, -3, at the point z = o, prevents the considera-

z

tion of such a path ;
and that the result should be negative

when the differential is at every point of the path positive

has no significance. The introduction of the complex variable

furnishes a perfectly satisfactory explanation of the result.

dz
Prob. 16. Show that the integral of along any semi-circum-

ference described about the origin as a center is equal to ni.

Art. 16. Reduction of Complex Integrals to Real.

The integral

may be written in the form

I {u-\- iv){dx + ufy),

or, separating the real and imaginary terms,

/ (udx vdy) -f- i I (vdx -f- udy).

Hence the calculation of the integral may be reduced to

the calculation of two real curvilinear integrals.

The equations

du _ dv du _ __ dv

'dx~dy' dy~ dx

which express the condition that u-\- iv should be monogenic,

express also that

udx vdy, vdx -\- udy

are the exact differentials of two real functions of the variables

x, y. Consider the case where these functions are one-valued.
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Denoting them by P(x, y) and Q(x, y) respectively, the inte-

gral may be written

\I\X, Y) - J\xyM + iWX, Y) - Q{x.,y.%

(x ,y ) and (X, Y) being the initial and terminal points re-

spectively of the path of integration.

Art. 17. Cauchy's Theorem.

Cauchy's Theorem furnishes the necessary and sufficient

conditions that a one-valued function f(z), having continuous

partial derivatives with respect to x and y, should yield within

a region bounded by a continuous closed curve a one-valued

integral, that is, an integral the value of which, when the lower

limit is fixed, depends simply on the upper limit, and not on the

path of integration. It will be more convenient, before consider-

ing Cauchy's Theorem, to demonstrate the following lemma:

Lemma. Let A be a portion of the .s-plane, having a bound-

ary 5 which Consists of a closed curve not intersecting itself,

or of several closed curves not intersecting themselves or one

another. If at every point of the region A, including its

boundary 5, a function Wot the real variables x and y is one-

valued and continuous and has continuous partial derivatives

f,f, the relations

^ ^*J?*)

fw*--f*jfc* (2)

exist, the integrals in the first members being taken along the

boundary in the positive direction, and those in the second

members being taken over the enclosed area.

Denote by A the inclination to the axis of x of the exterior

normal at any point of the boundary,* that is, the normal drawn

* It is assumed that the boundary has a determinate tangent at every point.
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to the right as the boundary is described in a positive direction.

If any straight line parallel to the axis of x be traced in

the direction of increasing values of x, at each point where

it passes into the area A,
cos A. is negative, and there-

fore in the first member of

(i) dy= cos \ds is negative.

At each point where this

straight line passes out of

the area A, cos A, and there-

fore dyy
in the first member

of equation (i), is positive.

Hence in the first member
of equation (i) the differ-

entials Wdy corresponding

to a given value of y, and taken in the order of increasing

values of x
y
have signs which, compared with the signs of the

corresponding values of W, first differ, then agree, and so

on alternately. In order now to compare the integral in the

first member of equation (i) with the integral in the second

member, it is necessary to take dy as essentially positive.

The sum of the differentials in the first member, correspond-

ing to a fixed value of y% must therefore be written in the

form

dy{- W,+ W.-W,+ 1Vt -...),

where Wlf W^ ,
. . . are the corresponding values of W taken in

the order of increasing values of x. But performing now in

the second member of equation (i) an integration with respect

to x, the same result is obtained, so that the two members of

equation (i) become identical, and the equation is verified.

To obtain equation (2) the same method is used. It is

necessary in this case to observe that if a line parallel to the

axis of y is traced in the direction of increasing values of y, at

each point where it enters A, dx in the integral of the first

If the boundary of a given region is not of this sort, the theorem holds for any
interior curve of which this assumption is true.

J<3



264 FUNCTIONS OF A COMPLEX VARIABLE. [CHAP. VI.

member must be taken as positive; and at each point where
this line passes out of A, dx in that integral must be taken as

negative.

By means of the preceding lemma, Cauchy's Theorem is

easily proved. This theorem may be stated as follows :

Theorem. If, on the boundary of and within a given region

A, a one-valued function w =/(#) is monogenic, and its deriv-

ative f\z) is continuous,* the integral j f(z)dz taken along

the boundary 5 is equal to zero.

For writing the integral in the form

/ wdz = j (iidx vdy) + i f\udy -j- vdx),

the preceding lemma gives

but since at every point of A

the given integral reduces to zero.

Art. 18. Application of Cauchy's Theorem.

From Cauchy's Theorem it follows that, if two different

paths Z, and Z 2
lead from the point z

Q
to the point Z, and if

along these paths and in the region inclosed between them a

given function f(z) has no critical points, the integrals of the

function taken along these two paths are equal. For two such

paths taken together, one described directly, the other re-

versed, constitute a closed curve, and the integral taken along

* Otherwise expressed, the one-valued function /(s) has no critical points on

the boundary of or within A, or f(z) is holomorphic in A.
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it is equal to zero. But, since reversing the direction of the

path of integration is equivalent to changing the sign of the

integral, the equation

is obtained.

The result just established may be stated in the following

theorem :

Theorem I. If a function is holomorphic in any simply

connected region bounded by a continuous closed curve, the

integral of the function, from a fixed lower limit in that region

to any point contained therein, is independent of the path of

integration, and is a one-valued function of its upper limit.

A region whose boundary is composed of disconnected

curves is not necessarily characterized by the property stated

in the theorem. Take, for example, the function

w \/{z a
x)(z <*,)...(* an),

and suppose that o < ]at |
< \at |

< . . . <
|
am \.

With the ori-

gin as a center, construct a system of concentric circles Clf

C..., C, C{ passing through axi C3 through a and so on.

Denote by SQ
the region inclosed within the first circle Clt by

S
t
that inclosed between C

t
and C and so on, the portion

of the plane exterior to the last circle Cn being denoted by Sn .

At an initial point z interior to one of these regions, assign to

w one of the two values possible, and consider the branch of

w resulting from a continuous variation. Then however z may
vary within any such region, this branch of w will be a mono-

genic function, and its derivative will be continuous. Having

regard to the branch-points alt at ,
. . ., an ,

it is evident that in

the regions Sof S9 ,
... it will be one-valued, and in the regions

Slt Ss ,
. . .

,
it will be two-valued. Thus in the regions 5a ,

St ,

, . .
,
the branch fulfils the required conditions, but the boundary

does not. The theorem is applicable only to 5 . It may be

observed that in every other region two paths may be drawn

joining the same two points such that the branch is not one-

valued in the enclosed portion of the ,s-plane.
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$>

Theorem II. lif(d) is holomorphic in any simply connected
r

Tl/
>

region S bounded by a continuous closed curve, the integral
> /

I f(z)dz, taken from a fixed lower limit z in that region to any

point Z contained therein, is a holomorphic function of its.

upper limit.

Let L be any path from z to Z. When the upper limit is

at the point Z+ dZ, L followed by a straight line from Z to>

Z -\- dZ can be taken as the path of integration. Hence

nz+dz nz nz+dz fo-P,
-

S*Z+dZ pZ+dZ

=AZ)JZ d,+Jz \A*)-AZ)Y>

The first term is equal to f(Z)dZ. The modulus of second

term is equal to or less than M\ dZ\, where M is the upper ex-

treme of \f(z) f{Z)\ along the line joining Z to Z -\- dZ^

But since f{z) is continuous, the limit of M when Z -\- dZ

approaches Z is zero. Hence

"*A*y* - f*A*V* - \AZ) + nZ,

where r/ approaches zero with dZ. The integral therefore has

/(Z)fora derivative, and is holomorphic in 5.

In the case of a region bounded by several disconnected

closed curves, of which one is exterior to all the others,.

Cauchy's Theorem may be stated in the following form :

Theorem III. Let a function j\z) be holomorphic in a

region A bounded by a closed curve C and one or more closed

curves Cx % C%* * interior to C. The integral of f(z) taken

along C will be equal to the sum of its

integrals taken in the same direction

along the curves Clt Ct>

^\ u* / por the integral of f(z) taken in a

positive direction completely around the

boundary of A is equal to zero. But

the curves (7,, Ca , . . . are then described in the direction oppo-
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site to that in which C is described. Hence if all the curves

are described in the same direction, the result may be written

fjw* =fc/w* +fcMdz+
If there is but one interior curve, so that the region A is

included between two curves C and Clf the integral taken along

every closed curve containing C
x
but interior to C has the

same value, viz., the common value corresponding to the paths

C and C\.

Art. 19. Theorems on Curvilinear Integrals.

Theorem I. If f{z) be continuous in a given region except

at the point a, the integral I f{z)dz, taken around a small circle

, having its center at a, will approach zero as a limit simulta-

neously with the radius r of the circle c, provided only

lim (z d)f{z) = o when z = a.

For let the upper extreme of the modulus of (z a)f{z) on

the circle c be denoted by M. Then at every point of c,

a \- M -M

and consequently

mod^ f(z)dz
= J ds = 2tzM.

Theorem II. The integral / -, r-, taken around anyfa v (z a)
ny J

closed curve C containing the point a, is equal to zero, except

when n = I. When n = I, this integral is equal to 2ni.

. For the value of the integral will be the same if any
circle described about a as a center be taken as the path of

integration. Let then z a = reiB
,
where r is a constant and

varies from o to 2rc. The integral becomes

# /2ir (n-l)iO
~ r- / e dd
rn-i J
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which reduces to zero except when n == I. If n = I, its value

is 27rz, whence

SAdz : 27tl.
z a

Theorem III. If f{z) is a function holomorphic in a given

region S, C a. closed curve the interior of which is wholly

within S, and a a point situated within C, then

&-dz = 27tif{a).^c z a
v J

For describing about a as a center a small circle c of radius

r, the equation

^ c z a *Jc za
is obtained. But at every point of c,

where, by choosing r sufficiently small, the modulus of t] may
be made less than any fixed positive quantity. Hence

^cza v
c z a ^cz a

but by the preceding theorems the first term of the right-hand

member is equal to 27tif(a), and the second term is equal to

zero.

If the equation of the theorem just established be differ-

entiated with respect to a, the following important formulas,

expressing the successive derivatives of a holomorphic function

at a given point, are obtained :
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The integrals in the first members of these equations are all

finite and determinate for every position of a within the curve

C. Therefore any function holomorphic in a given region ad-

mits an infinite number of successive derivatives at every

interior point. Each of these derivatives being monogenic
must be continuous. Hence the following:

Theorem IV. If f(z) is holomorphic within a given region,

there exists an infinite number of successive derivatives of

f(z) y which are all holomorphic within the same region.

Denote by r the shortest distance from the point a to the

curve Cm Then at every point of this curve \z a\ > r. Let

M be the upper extreme of the modulus f(z) on C}
and / the

length of C. Then

mod
/c (z -a)

n+l

(n)

dz
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From the preceding article, denoting a variable point on C

2ntJc Z ~ a - f

= jl fm^v1+__ ,

. +^l_+ ^ 1
27iiJc Z-a\_ ^Z-a^ T

(C-a)^(C-)'*(C--^J

= A") + */'(<*) + 7^r/"<) + +T-fzf'W + R'

I . 7- 1 2i . . 71

where

r - _L f l
" +1AQ r_

2niJc (Z-aY
+\Z-a-t)

-

By taking n sufficiently great the modulus of R may be

made less than any given positive quantity. Let M be the

upper extreme of the modulus of f(z) on the circle C, p the

modulus of t, and r the modulus of Q a or radius of C. Then

27tJc rn+\r-p) < r-p\rj

which, since p < r, has zero for its limit when n = oo .

Writing now z for a-\-tf Taylor's Series becomes

The series is convergent and the equality is maintained for

every point z included within a circle described about a as a

center with a radius less than the distance from a to the nearest

critical point of f(z).

When a is equal to zero, Taylor's Series takes the form

M = /(o) + *f(d) + ^/"(o) + . . . + _!_/<-)(o) +...-,

expressing/^) in terms of powers of z. This form is known

as Maclaurin's Series.
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Art. 21. Laurent's Series.

Theorem. Let S, a portion of the ^-plane bounded by two

concentric circles C
1
and 7

2 ,
be situated in the interior of the

region E }
in which a given function f(z) is holomorphic. If a

be the common center of the two circles, and a -j- t a point

interior to S, f(a-\- 1) can be expressed in a

convergent double series of the form

tn = oo

f{a + /)
= 2AJ".
m = oo

With a + as a center construct a circle

^ sufficiently small to be contained within

the region 5. If then C
x
be the greater of

the two given circles, it follows from Article 18 that

2ni*'ci
^ a t 2ni

ĉ% C a t 2ni J'
t \ a t

But from Article
icj^.'Ufc ^
i_r /(ck

=f{a + t)>

whence

yv T ; 2ni Jc^ - a -t 27tiJc*Z- a i

The two integrals of the right-hand member may be written :

where
^Cv

tf = /1 2V^
tn+1AQdZ

2m^(Z-ay+\Z -a-t)'

p - _L AC - *Y+lACW
"> ~

27ziJc>t
n+ l

(Q-a-t)'
But |/| <|C *| at every point of Cl%

and |/|>|C .*)
at

every point of Ct ,
so that R, and i?

3
both have zero for a limit
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when n = oo . The value off(a + t) can therefore be expressed
in the form

f(a + t)=A + A
1
t + AS + Af + ...

Since in the region 5 the function f(z)/(z a)
m+1 is holomor-

phic for both positive and negative values of m
f
Am may be

written

a - -L C f^ dr*m - 2t7zJc & - a)"*
1a^

where C is any circle concentric with C, and C
t
and included

between them.

The series thus obtained is convergent at every point a 4- 1

contained within the region S. It is important to notice, how-

ever, that when the positive and negative powers of t are con-

sidered separately, the two resulting series have different

regions of convergence. The series containing the positive

powers of / converges over the whole interior of the circle C
x
;

while the series of negative powers of / converges at every-

point exterior to the circle 7
a . The region 5 can be regarded,

therefore, as resulting from an overlapping of two other

regions in which different parts of Laurent's Series converge.

Writing z for a -f- /, Laurent's Series takes the form

f(z) = A + Az - *)+ Alz - ay+...
+ A _, (

z- a)
- 1 + A_2 (z

-
a)-

2 + . . *

Consider as a special numerical example the fraction

+
{Z I) (Z 2) (Z 3) 2(2 I) Z 2~ 2(Z 3)

If \z\ < 1, all three terms of the second member, when

developed in powers of z, give only positive powers. If

1 < \z\ < 2, the first term of the second member gives a series-

of negative descending powers, but the others give the same

series as before. If 2 < \z\ < 3, the first and second terms

both give negative powers. If \z\ > 3, all three terms give
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negative powers, and the development of the given fraction

can contain no positive powers. Thus a system of concentric

annular regions is obtained in each of which the given frac-

tion is expressed by a convergent power-series. Laurent's

Series gives analogous results for every function which is holo-

morphic except at isolated points of the ^-plane.

Art. 22. Fourier's Series.

Let w = f(z) be holomorphic in a region S ,
and let it be

periodic, having a period equal to go, so that/^ + #<) =/(^)
where n is any positive or negative integer. Denote by Sn the

region obtained from 5 by the addition of nco to z
;
and sup-

pose that the regions . . .
, S_ n ,

. . .
, 5_ , , S ,

5
X ,

. . .
,
Sn ,

...

meet or overlap in such a manner as to form a continuous strip

S, in which, of course, the function w will be holomorphic.

Draw two parallel straight lines, inclined to the axis of reals at

an angle equal to the argument of cw, and contained within the

strip 5. The band T included between these parallels will be

wholly interior to S. 1 4 o
2iriz

By means of the transformation z' = e w the band T in

the ,2-plane becomes in the '-plane a ring T' bounded by two

concentric circles described about the origin as a center, z and

z -f- hod falling at the same point z\ Since w is holomorphic
in a region including T, and

dw dw dz gd 2iriz dw
dz' dz dz' 2ni

'

dz'

w regarded as a function of z' will be holomorphic in T\
Hence, by Laurent's Theorem,

m = <x>

w= 2 Amz
h
\

w = -<

the quantity a in the general formula of the preceding article

being in this case equal to zero. Substituting for z' its value,

the preceding equation becomes

w = 2 A me w
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where

i rwdz' i /
z+w _ 2m

A =^iJc^ = vJ2

e " wd*'

In the latter integral the path is rectilinear. Denoting its

independent variable by C for the purpose of avoiding confu-

sion, the value of w becomes

M = -^C e~ /{Z)dZ
m=-oo

I /+w 2 w=co /+w imn

1 r^sr* ic .

2 2//Z7T.S /^w 2mnQ , ,

i/ /^c+^cs ^ cos -/(eye

2 = co 2M71Z /+w 2ni7lC

+ -^ sin / sin V(CKC
= 1 b

G
Art. 23. Uniform Convergence.

Let the series W= w -\- u\ + w^ -\- . . . + ze/n+ . . .
,
each

term of which is a function of z, be convergent at every point

of a given region 5. Denote by Wn the sum of the first n

terms of W. If it is possible, whatever the value of the posi-

tive quantity e, to determine an integer v, such that whenever

n > v

\W- Wn \<e

at every point of S, the series W is said to be uniformly con-

vergent in the region 5.

Uniformly convergent series can in many respects be treated

in exactly the same manner as sums containing a finite number

of terms.

Theorem I. A uniformly convergent series, the terms of

which are continuous functions of z, is itself a continuous

function of z.

For at any point z, W may be written in the form
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JV= Wn + R; and at a neighboring point z
r

,
W = Wn

' + R'.

Hence

W-W'=Wn -Wn'+R- R',

and
|

IV- W'\ =| Wn
- W:\+ \R\+ \R!\.

But by choosing n sufficiently great, \R\ and \R'\ may both

be made less than any given positive quantity . Having

chosen n thus, Wn becomes the sum of a finite number of

continuous functions. It is then continuous, and, by making

\z' z\ less than a suitable quantity d, \W Wn'\ may De W<n

made less than - . But, under these suppositions,

\W- W'\<e.
W is, therefore, continuous at the point z.

Theorem II. If all the terms of a uniformly convergent
series

W= Wo + w, + . . . + wn -f . . .

are continuous, the integral of the series, for any path L situ-

ated in the region of uniform convergence, is the sum of the

integrals of its terms :

Sl
Wdz =

Sl
w ẑ+XWidz + + Wnd*+

For, writing W= Wn + R, it is possible to choose n so that,

however small e may be, \R\ < 6 at every point of Z. If n be

so chosen,

fWd^fwjz+ fRdz..

But, by Article 15, denoting by / the length of the path L,

mod / Rdz < e/,

which, when n = 00
,
has zero for its limit. Hence

f Wdz = lim fwjz.
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Theorem III. If the series JV= w -\- w x -\- . . . + wn-\- . . ..

is convergent, and the series

, __ dw, dv>i
'

dwn~
dz

""
ds"r '"'r ~dk"t

'"

is uniformly convergent in a region S, and if further the terms

of W are continuous in S, W will be the derivative of W.

For, integrating W from a to z along a path L contained

in S,

J W'dz w (z) w,{a) + . . . + wn{z) wn{a) + . . .

^W{z)-W{a\

But the derivative of the first member is W, which must

also be the derivative of the second member, and therefore

of W.

An immediate consequence of the preceding theorems is

the following :

Theorem IV. If the terms of the convergent series

W w + w, -f . . . + wn + . . .

are holomorphic in a given region Sy contained in the region

of convergence, and if the series

ytrr
dw

*
\

dw
i i i

dw
i"

dz "*" dz "t" * * * T dz T ' " "

is uniformly convergent, ^Fwill be holomorphic in the region

S, and will have W for its derivative.

To illustrate by an example that uniformity of convergence
is essential to the preceding theorems, take the series

W= -i- i J *"(i- *)

At the point z I each term is continuous, and the series

is convergent, having the value 1/2. The series is, however,

discontinuous at z = i< For, writing it in the form

w=- + ( L_\+(<~i L.\ +
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the sum of the first n terms is seen to be

"
i + zn

But W is the limit of Wn when n = oo
,
and is therefore

unity at every point z for which \z\ < I, and zero at every

point for which \z\ > I.

If now this series be considered for the points within and

upon a circle described about the origin as a center with an

assigned radius less than unity, the remainder after n terms,

z n

or I Wn = -
can, by a suitable choice of n

y
be made

I -f zn J

less in absolute value than any given quantity. In such a

region, then, the series converges uniformly, and, by Theorem

I, can have no point of discontinuity. A similar result holds

for the region exterior to any circle described about the origin

as a center with an assigned radius greater than unity.

By means of Theorem II given above it can be shown that

Laurent's Series is unique. For, assuming the notation used

in the determination of the series, the series is uniformly con-

vergent in the region included between any two given circles

concentric with C
x
and Ca ,

both being interior to C
x
and ex-

terior to Cr
Suppose, now, that two such series are possible :

m = oo

f(a + t)= 2 A mr = 2 Am'r.
m = - oo ,tt = _oo

Divide by /
n + 1

,
and integrate along any circle described about

rtasa center and included in the region of uniform converg.

ence. The integral I t
m - n ~ ldt for such a path is zero, except

when m = n; the integral I t~ l dt = 2*Jr.

Hence for such a path,



278 FUNCTIONS OF A COMPLEX VARIABLE. [CHAP. VL

from which it follows that An = A n', and the two series are

identical.

Art. 24. One-valued Functions with Critical Points.

Theorem I. A function holomorphic in a region 5 and

not equal to a constant, can take the same value only at iso-

lated points of vS.

For in the neighborhood of any point a interior to S, by

Taylor's theorem,

/(*) -A") = (* **'(<*) + ^=^-"/"()
+

Unless/^) is constant over the entire circle of convergence of

this series, the derivatives /'(a), f'\ci), . . . cannot all be

equal to zero. Let f {n
\a) be the first which is not equal to

zero. Then

' ^ J J v } v J
[_i . 2 . . . n '

1 . 2 . . . (n -\- i)
v } v

J

If \z a\ be given a finite value sufficiently small, the

modulus of the first term of the series within the brackets will

exceed the sum of the moduli of all the other terms, and the

same result will hold for every still smaller value of \za\ +

For values of z, then, distant from a by less than a certain

finite amount, /(^) f(a) is different from zero.

If, on the other hand, the function is constant over the en-

tire circle, described about a as a center, within which Taylor's

series converges, it will be possible, by giving in succession

new positions to the point a, to show that the value of the

function is constant over the whole region 5.

Theorem II. Two functions which are both holomorphic
in a given region 5 and are equal to each other for a system of

points which are not isolated from one another, are equal to

each other at every point of 5.

For let/(^) and <p(z) be two such functions. By the pre-

ceding theorem, the difference/^) <p(z) must be equal to

zero at every point of S.
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Theorem III. A function which is holomorphic in every

part of the -s-plane, even at infinity, is constant.

For, a being any given point, whatever the value of g,

As) = /(a) + (*
- ay'(a) + ... +^'^,/*(<*) +

But by Article 19, r being the radius of any arbitrary circle

having its center at a, and M being the upper extreme of the

modulus of f{z) on the circumference of this circle, (9'^(p*\

. , lM)/ N 1 . 2 . . . nM
mod, fn

\d) < .

But M is always finite, and r may be made indefinitely great.

Hence f {n
\d) o for all values of n, and

f{z)=f(a).

Theorem IV. If a function/^), holomorphic in a region 5,

is equal to zero at the point a situated within S, the function

can be expressed in the form

f{z) = (z- ay<f>(s),

where m is a positive integer, and <p(z) is holomorphic in 5 and

different from zero at a.

For in the neighborhood of the point a, by Taylor's Theorem,

A>)=A*)+ ( -}/+
Let/ (w)

(a) be the first of the successive derivatives at a which

is not equal to zero. Then

f(z) = (z a)
m

\

- ^ J-
7
-L

t -(z a) + . . . I,v

L 1 .2. . . m ' 1.2 . . . (w+ 1)
J J

which is the required form. The point a is a zero of f(z) f
and

m is its order.

Theorem V. If the point a is a critical point of a given

function /(s), but is interior to a region 5, in which the recip-

rocal of j\z) is holomorphic, the function can be expressed in -

the form

where m is a positive integer, and x{z) is holomorphic in the

neighborhood of a.
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For by the preceding theorem

jA
= (*

-
tf)

w0<,

where <p{z) is holomorphic and not equal to zero at z = a.

Hence

f(z\ - I l - *&J \9 ^_ ayn
'

0(^ ^ _ ay
Further, since in a region of finite extent including the

point a

X(*) = A -f A x (z -) + ...,

f(z) = dl L
. . .

A-dauzi _L +(g\J K J

(z
-

q)
m ^ ' ^z -a^ n h

a being an ordinary point for tp(z).

The point a is a pole of f(z) and m is its order.

Theorem VI. A function, not constant in value, and hav-

ing no finite critical points except poles, must take values

arbitrarily near to every assignable value.

For suppose that f(z) is such a function, but that it takes

no value for which the modulus of f(z) A is less than a given

positive quantity e. Then the function

i

/(*)
- A

will be holomorphic in every part of the ^-plane, which, by
Theorem III, is impossible unless f(z) is a constant.

Theorem VII. A function f(z), having no critical point

except a pole at infinity, is a rational entire function of z.

For the only critical point of f (
-

J is a pole at the origin.

Hence

/- #+...+4+0W ,

where <fiz) is holomorphic over the entire plane, including the

point at infinity. (f)(z) is consequently equal to a constant A ,

The given function therefore can be written in the form

f(z) = A mz> + ...+A 1
z + A .
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Theorem VIII. A function f{) whose only critical points

are poles is a rational function of z.

The poles must be at determinate distances from one an-

other
;
otherwise the reciprocal of f{z) would be equal to zero

for points not isolated from one another. The number of poles

cannot increase indefinitely as \z\ is increased; for then the

reciprocal of / (
-

) would have an infinite number of zeros indefi-

nitely near to the origin. The total number of poles is there-

fore finite. Let a, b, . . . denote them. In the neighborhood
of a the function can be expressed in the form

(z a)
m ' ' x a

4X being an ordinary point for cf>(z).
In the neighborhood of b>

<p(z) can be expressed in the form

(z b)
u '

* ' '
' z b

a and b being both ordinary points for *p(z). Proceeding in

this way the given function will be expressed as the sum of a

finite number of rational fractions and a term which can have

no critical point except a pole at infinity. This term is a

rational entire function.

Theorem IX. If the function f{z) has no zeros and no

critical points for finite values of z
t

it can be expressed in the

form f{z) = e^z
\ where g(z) is holomorphic in every finite re-

gion of the -s'-plane.

f(z)
For -~~ can have no critical points except at infinity, since

in every finite region of the ^r-plane f(z) and f'{z) are holomor-

phic and f{z) is different from zero. Hence, choosing an arbi-

trary lower limit z
,
the integral

/
is holomorphic in every finite region. The function /[z) con-

sequently must take the form
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where g(z) = k(z) + log f(z ).

Theorem X. If two functions/^) and <p(z) have no criti-

cal points in the finite portion of the ,2-plane except poles, and

if these poles are identical in position and in order for the two

functions, and their zeros are also identical in position and

order, there must exist a relation of the form

f{z) = <p(z)^\

where g(z) is holomorphic in every finite region of the ^-plane^

For the ratio of the two functions has no zeros and no>

critical points in the finite portion of the .s-plane.

Art. 25. Residues.

If a one-valued function has an isolated critical point a, it

is expressible by Laurent's series in the region comprised be-

tween any two concentric circles described about a with radii

less than the distance from a to the nearest critical point*

Hence in the neighborhood of a

/(s) = A.+A
l(s-a)+At(*-ay+ ...

+ B
1(z-a)-

i + B&-a)->+ ...

The coefficient of (2 a)'
1

in this expansion is called the

"residue" oi f(z) at the point a.

If any closed curve C including the point a be drawn in the

region of convergence of this series, and f{z) be integrated

along C in a positive direction, the result will be

J (fz)dz = 2niB
x
.

The following may be regarded as an extension of Cauchy's

theorem :

Theorem I. If in a region 5 the only critical points of the

one-valued function /(.s) are the interior points a, a f

,
... ,

the
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integral j f(z)dz taken around its boundary C in a positive

direction is equal to

fcA*)d* = 2*i(B+ >+ ...),

where B, B\ . . . are the residues of f(z) at the critical points.

For the integral taken along C is equal to the sum of the

integrals whose paths are mutually exterior small circles de-

scribed about the points a, a!
>

. . .

The following theorems are immediate consequences of the

preceding :

Theorem II. If in a region having a given boundary C the

only critical points of the one-valued function f(z) are poles

interior to C, an equation

J}.
-dz 2iit(MN)

cAz
)

exists, M denoting the number of zeros and N the number of

poles within C, each such point being taken a number of times

equal to its order. |p^^l
For in the neighborhood of the point a

/(Z)
= (*

-
)-0(*)j|j^yiv

where <p(z) is finite and different from zero at a, and m is a

positive integer if a is a zero, a negative integer if a is a pole.

Hence
,,

/'{*) = m
. 0Xf) , fj^

f(z) z a** <P(zY
J

\ 2L-*

The integrand, therefore, has a pole at every zero and pole of

f(z), and its residue is the order, taken positively for a zero,

and negatively for a pole.

Theorem III. Every algebraic equation of degree n has n

roots.

For let f{z) represent the first member of the equation

zn + a
x
zH

~ l + . . . + an = o. Since f(z) has no poles in the



284 FUNCTIONS OF A COMPLEX VARIABLE, [CHAP. VI.

finite part of the ,2-plane, the number of roots contained within

any closed curve C will be given by the integral

' niJc A**?*/(*)

But taking for C a circle described about the origin as a

center with a very great radius, this integral is

j_ k-' +(-y-+ ...
dg = J_ Cndz v

vj
27ZVc *+ ai? +* 2nlJc z

where e has zero for a limit when \z\
= oo . Hence the limit

of the preceding integral, as |sr| is increased, is u.

Prob. 17. Show that if z = 00 is an ordinary point of f(z), that

is, if /(s) is expressible for very great value of z by a series contain-

ing only negative powers of z, the integral o(/(z) around an infinitely

great circle is equal to 2iti into the coefficient of . This coeffi-

cient is called the residue for z = 00 .

Prob. 18. Show that the sum of all the residues of f{z), of the

preceding problem, including the residue at infinity, is equal to

zero, f^l

Prob. io. If tt\ is a rational function of which the numerator

is of degree lower by 2 than the denominator, and if the zeros

4, , S ,...,# of the denominator are of the first order, show that

A
> Art. 26. Integral of a One-valued Function.

*-
It was shown in Article 18 that, if a function/^) is holo-

morphic in a given region S, its integral taken from a fixed

lower limit contained in 5 to a variable upper limit z is a one-

valued function of z within 5. If F{z) is a function which

takes a determinate value F(z )
at z = z and is one-valued

while z remains within S, having at every point f(z) for its

derivative, the integral of f(z) from z to z is equal to

F(z) F(z ).
If F

x (z) is another function fulfilling these con-

= o.
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ditions, so that the integral of f(z) can be written also in the

form F
x (z) F^z^), the functions F(z) and F

x (z) differ only by
a constant term

;
for 3,$)

- ^< l

^o)
- *\

Suppose now that f(z) is still one-valued in S, but that it

has isolated critical points #,,#,,... interior to 5. Any two

paths from z to z, which inclose between them a region con-

taining none of the points a
lf
a

2 ,
. . ., will give integrals identi-

cal in value. Let the two paths Llf L include between them

a single critical point aK ;
and consider the integrals along

these two paths. The integral along L
x
will be equal to the

integral along the composite path L^L^L, where the exponent
i indicates that the corresponding path is reversed

;
for the

integral along L' lL is equal to zero. But L
x
L~ l

is a closed

curve, or" loop," including the critical point aK , and, assuming
that it is described in a positive direction about aKJ the inte-

gral along it is equal to 27tiBKi where BK is the residue of f(z)

at aK . Hence

ff{z)dz
= 2niBK -\- ff{z)dz.

If now the two paths Z,, L from z to z include between

them several critical points aK ,
aky a^ y

. . ., draw intermediate

paths Z3 ,
. . ., Lmy so that the region between any two consec-

utive paths contains only one critical point. The integral

along L x
will be equal to the integral along the composite path

L
X
L~ X

L^ . . . Lm ~*LmL~ x

L, since the integrals corresponding to

Z
a

_1
Z,, . . ., Lm

~ 1Lm ,
L~ XL are all equal to zero. But L

XL~\
LiLt '\ . . ., LmL~

x

are all closed paths or loops, each including

a single critical point, so that, assuming that each is described

in a positive direction and that BK ,
BKy B^, . . . denote the resi-

dues of f{z) at the critical points,

f^Mds = 27ti(BK + B, + B.+ . . .) +fL A*Y-
It has been assumed in the preceding that neither of the

paths L lt L intersects itself. In the case where a path, for
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example Llt
intersects itself in several points c

%%
c%t . . ., it is

possible to consider Z, as made up of a path Z/ not intersect-

ing itself, together with a series of loops attached to Z/ at

the points c
lt

cv . . . Each of these loops encloses a single

critical point aK and, if described in a positive direction, adds

to the integral a term 27tiBK Each such loop described in a

negative direction adds a term of the form 2niBK . It is evi-

dent that the form of each loop and the point at which it is

attached to Z,' may be altered arbitrarily without altering the

value of the integral, provided no critical point be introduced

into or removed from the loop. In fact all the loops may be

regarded as attached to L* at z .

It can be proved by similar reasoning that the most gen-

eral path that can be drawn from z
%
to z will be equivalent, so

far as the value of the integral is concerned, to any given path
Z preceded by a series of loops, each of which includes a sin-

gle critical point and is described in either a positive or nega-

tive direction. The value of the integral is therefore of the

form

fL f{z)dz + zni{mx
B

x +m^+ ...),

where m lt m^ . . . are any integers positive or negative.

As an example consider the integral / . The onlv

critical point is z = a. Any path whatsoever from z to z is

equivalent to a determinate path, for example, a rectilinear

path, preceded by a loop containing a and described a certain

number of times in a positive or negative direction. If w de-

note the integral for a selected path, the general value of the

integral will be w -f- 2nni. If now a straight line be drawn

joining z
Q
to a, and if along its prolongation from a to infinity

the .sr-plane be cut or divided, the integral in the #-plane thus

divided is one-valued. But, with the variation of z thus re-

stricted, any branch of the function log (z a) is one-valued.

Select that branch, for example, which reduces to zero when

2=za-\- I. It takes a determinate value for z = z
,
and its
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derivative for every value of z is . Hence, denoting it
z ct>

by Log (z a),

. J j^Ta = Log iz-d)- Log (z
-

a) = Log ^-~^.

For a path not restricted in any way, the value of the inte-

/ dz _ z a . ,
z a

Log 2nni = logz a z a

Prob. 20. If -S-v is a rational function of 2 of which the numer-
tp(z)

-ator is of degree lower by 2 than the denominator, and if the zeros

a
lt

<z
a ,

. . ., # of the denominator be of the first order, show that

fc.
ft8*=2-P& log

where 2<p{av)/tp\av)
= o. (See Prob. 18, Art. 25.)

Art. 27. Weierstrass's Theorem.

Any rational entire function of z, having its zeros at the

points alf a . . ., amy can be put in the form

A{z- a^(z - *,)" ...(# amy>,

where A is a constant and
,

. . ., nm are positive integers.

More generally, any function which has no critical point in the

finite portion of the ^-plane and has the points a
lt

. . ., am as

its zeros, is of the form

where g{z) is holomorphic in every finite region.

The extension of this result to the case where a function

without finite critical points has an infinite number of zeros is

<Jue to Weierstrass. It is effected by means of the following

theorem :

Theorem. Given an infinite number of isolated points a
lf
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aa , ...,<?,..., a function can be constructed holomorphic ex-

cept at infinity and equal to zero at each of the given points

only.*

For the given points can be taken so that

I
an | increasing indefinitely with n. Consider the infinite product

4w = $(i fjt
f
<f,

where Pn{z) denotes the rational entire function

Any factor may be written in the form

(i
- L)* -*s( i

-i) +F^

But since

(
z \- r dz * z* r z*dz

g \
l

~"aj~ ~*A an z
" ~

~an

" "
no} */> a*(an-zf

the path of integration being arbitrary except that it avoids

the points a lt
a . . ., the product may be expressed as

rz zndz
ZZ** W ,

in which
ij)n(z)

= J an
n
(an
-

z)'

In any given finite region of the ^-plane it will be possible

to assume that
| z\

~
p < am ,

since \a\ increases indefinitely

with n. Divide the product into two parts,

The second part is equal to

tn .

e

* The following proof is taken from Jordan, Cours d'Analyse, 2d edition,

Vol. II.
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00 00

Consider the series 2ipn(z) and 2ip(z), each term of the sec-
tn m

ond being the derivative of the corresponding term of the first.

In the given region p

i *.'(*) i

; CX v*

<ij ,

Ki-i-py
00

Each term of ^tpn
r

(z) is accordingly less in absolute value than
m

the corresponding term of a convergent geometrical progres-
00

sion independent of g. The series 24>'(*)i therefore, converges
M

oo

uniformly. The series ^tp n(z) also converges, since

\U*)\= mod fj'W*< W^Z\-p)>
where / denotes the length of the path of integration.

jo,
ink a,

By Theorem IV, of Article 23, the series 2ip(z) represents
tn

in the given region a holomorphic function. The exponential

tn
e

also must be holomorphic. The other part of the product

27
(1
- lW>

containing only a finite number of factors is everywhere holo-

morphic, vanishing at all of the points alf av . . ., which are

situated within the given finite region. But this region may
be extended arbitrarily. The product therefore fulfils the re-

quired conditions.

In the preceding demonstration it was tacitly assumed that

none of the given points ati
a . . . was situated at the origin.

To introduce a zero at the origin it is necessary merely to mul-

tiply the result by a power of z.

The most general function without finite critical points
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having its only zeros at the given points a
lf
a%} . ., an . . ., can

be expressed in the form

f[z)
= <*un[i - -\yw

i ^ aJ
fj.*)

where g(z) is holomorphic except at infinity; for the ratio of

any two functions satisfying the required conditions is neither

infinite nor zero at any finite point.

By means of Weierstrass's theorem it is possible to express

any function, F(z), whose only finite critical points are poles as

the ratio of two functions holomorphic except at infinity. For,

construct a function tp(z) having the poles of F{z) as its zeros.

The product F(z) . tp(z)
=

<p(z) will have no finite critical point.

The given function can, therefore, be written

FtA - #*)

which is the required form.

In applying Weierstrass's theorem to particular examples,

it will rarely be found necessary to include in the polynomials

PJz) so many terms as were employed in the demonstration

given above. It is quite sufficient, of course, to choose these

polynomials in any way which will make the product converge

for finite values of z to a holomorphic function. Factors of the

form /
x

\ aj

where Pn(z) is chosen in such a manner, are called "
primary

factors."

As an application of Weierstrass's Theorem take the reso-

lution of sin z into primary factors. The zeros of sin z are o,

7t, 27t, . . ., n7r, .... Consider factors of the form
z

I Z \

\ nit'

so that PJz) contains only one term ,
and

W) =
-Inninn z)



ART. 27.J WEIERSTRASS'S THEOREM. 291

00

The series 2$M'(g) will converge uniformly in any region at
m

every point of which \z\
=
p < mn ; for, since

nn{n7t s)
\ \nn\l \ mnl

each term is less in absolute value than the corresponding
term of the series

\ war/

A similar result holds for the series J2tpn'{z). The two
-m

series m

$4,4*), 21>4s)

are also convergent; for
\tpn{z)\ cannot exceed the upper ex-

treme of \tpn(z)\ multiplied by /, the length of the path of

integration from the origin to the point z. These series

accordingly represent holomorphic functions in the region for

which \z\
=

p. Hence the expression required is

sin g = se*'>n( 1 - )e
-00 \ nnj

the value n = o being excluded from the product. It will be

shown in the next article that e^ = I.

Prob. 21. If gd
1
and gd

3 be two quantities not having a real ratio,

the doubly infinite series of which the general term is 7 ;
rr

is absolutely convergent if p > 2. Hence show that the product

-=*4-3
Z

-I-

til 2 8

e

where go = moo
x -\- nco7 ,

defines a holomorphic function in any finite

region of the s-plane. This function is Weierstrass's sigma func-

tion, and is the basis of his lystem of elliptic functions.
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Art. 28. Mittag-Leffler's Theorem.

Any one-valued function f{z) with isolated critical points

*?,,#,,... can be represented in the neighborhood of one of

these points by Laurent's series
;

viz. :

M =A.+ A,(z- O + A,(g -.) + ...

+ ,{g
-

)-' + Biz - a.)" +

Hence /(*) = <&*) + G.(
1~-

),

where 0(#) is holomorphic in a region containing the point an T

and GH\ J
is holomorphic over the whole plane excluding

the point an . If an is a pole oif{z), Gn l

J

contains a finite

number of terms
;
otherwise it is an infinite series. If the

number of critical points is finite, and the function Gn [
J

is formed at each such point, by subtracting the sum of these

functions from/^) a remainder will be obtained which has no

critical point in the finite part of the plane. This remainder

can be expressed as a series of ascending powers G{z) converg-

ing for every finite value of z. The function f(z) can there-

fore be written in the form 1* >*]

analogous to the expression of a rational function by means of

partial fractions.

The extension of this result to the case where the number

of critical points is infinite is due to Mittag-Lefrler. Let axi

,,..., ani ... be the critical points of the one-valued func-

tion /(#), and suppose that

kl <l*il < A*\ < >

\an \ increasing without limit when n is increased indefinitely.

Let, further, GM (
-

)
be the series of negative powers of

. .4A
? >ju *^^ <*>i

- " ^ jTAk
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an contained in the expansion oif(z) according to Laurent's

Series in the neighborhood of an .

The function GJ \ having no critical point except at

an , may be developed by Maclaurin's series in the form h-^YO

and the series will converge uniformly within a circle described

about the origin as a center with any determinate radius

fin < \an \.
Within the same circle Maclaurin's series, applied

to Gn'\ ], the derivative with respect to z of GJ A,
\2 aj \2 anj

converges uniformly. Hence, for any point within the circle

Fn(z) representing the first v + i terms of the development of

GJ
] by Maclaurin's theorem, Fn\z) its derivative, and

\2 aj
R

y
R! remainders which by a suitable choice of v may be made

less in absolute value than any given quantity.

Choose the positive quantities Elf E% > . . . +EU9 . . . so that

the series E
x + E

t -\- . . . + En + . . . is convergent. Choose

also in connection with each of the points alf att . . . , aMI . . .,

an integer v such that

ft
\

z
\ <A < |*h anc*> m general,

1x10(1t^-ty " fjw]
<e*> mod[^t^y

"a,w] <Em '
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Consider now the series

in any finite region of the plane, the points a
x%
a

3 ,
. . . ,

ant . . .

being excluded. Since \aM \

increases indefinitely with n, it is

possible, in any finite region of the #-plane, to assume that

|*| <P< \

am\* Separate from each of these two series its

first m I terms. These terms will have in each case a

finite sum. The remaining terms of either series taken in order

will be less in absolute value than Mmt Bm + h . . . respectively,

\z\ being less than each of the quantities pmy pm + lf
. . . . Ac-

cordingly, each of the series "/'"^s^^ S w*>*Oiw~ ft* k*. a-Vma

is absolutely convergent for every value of z except a lt a
2 ,. . . r

any . . . . It is evident, further, that in any given finite region,

from which the points a lt a . . . ,
an ,

. . . are excluded, the

two series converge uniformly. In such a region any term of

either series is holomorphic ; and, therefore, by Theorem IV
of Article 23, the first of these series defines a holomorphic
function.

The point an is an ordinary point for the difference

&> - [>by-
'*#>]

=
[a*)

-
sfcdbeG +m

since in its neighborhood this difference may be developed as

a convergent series containing only positive powers of z an .

In the same way each of the points a
lt
a . . .

,
aHi ... is an

ordinary point for the function

This function, therefore, can have no critical point except at

infinity, and must be expressible as a series G{z) containing

only positive powers of z and converging uniformly in any
finite region of the ,2-plane. Hence the function f(z) may be

put in the form
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M = G{z) +2
[_G{izrj)

-
/)],

in which the character of each critical point is exhibited.

As an application of Mittag-Leffler's theorem consider cot z.

Its critical points are z = o, zr, 27r, .... In the neigh-

borhood of = o, cot z is holomorphic ;
and in the neigh-z

borhood of z = tztt, being any positive or negative integer,

cot z is holomorphic. The series
z rnt

+ 00
j^ z nn'

in which m is an arbitrary positive integer, is not convergent

for finite values of z, even when \z\ < m. The series

.^r !+-] = -^
z

=^=
\ nnl

is, however, absolutely convergent at every point for which

\z\ <m. For the modulus of any term is equal to

W _ 1*1

v(i-W).V 7Z7Z7^7T>

and, therefore, less than the corresponding term in the series

z\

*\ n
\ win)

A similar result holds for the series

\_z -f- rnt nnA

It is easy to see now that the reasoning employed in the

demonstration of Mittag-Leffler's theorem may be applied to

show that the series
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z ^ \_z nn ' nnS
oo

where the summation does not include n = o, defines a func-

tion holomorphic in any finite region of the ^-plane, the points

O, 7t> 2?r, . . . being excluded. The difference

cot,_i_^r_!_ +_LV^Jz ~
\_z nn x nnJ

can have no critical point except at infinity. It must, there-

fore, be expressible as a series G(z) of positive powers of z>

having an infinite circle of convergence. Hence

I p I i "1

cot * = (*) + - + j> h-
oo 1

The next step is to determine (*). It is to be observed

that, if G(z) is a constant, its value must be zero, since

cot ( z) = cot z. If G{z) is not a constant, differentiation

of the preceding expression for cot z gives

i ,, I 2 i .

sin z w z TZ {z nny

It follows, by changing z into z -\- n, that

G\z + n) = G'(z).
if

Hence G\z) is periodic, having a period equal to n
;
and as the

point z traces a line parallel to the axis of reals, G'{z) passes

again and again through the same range of values. But G\z),

being the derivative of G(z\ is holomorphic for every finite

value of *. It can, therefore, become infinite, if at all, only
when the imaginary part of z is infinite. If z be written in )

the form x -f- ty, the value of G'{z) may be expressed as

_
I

j_4r- I (
2^y

(cosx + * sm x V
* ^ '

~
(x -\- iy)* ^ (x-\-ty nnf \(cos 2x-\-i sin 2x)elyi

When jy
= the first and last erms of the second

member vanish. In regard to the series it can be proved that,

}-->- f 2 i 1 -^ iU ^C*g -\ <f t
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I4v

for any given region is which y is finite and different from

zero, an integer r can be found such that the sum of the moduli

of those terms for which ||> v is less in absolute value than

any previously assigned quantity e. As \y\ is increased the

modulus of each of these terms is diminished. The modulus

of their sum, therefore, cannot exceed e when y = 00. But

when^= the sum of any finite number of terms of the series

is zero. Hence the limit of the whole series is zero. G'(z),

therefore, never becomes infinite. Hence, by Theorem III,

Article 24, it is constant, and is equal to zero. It follows that

&(z) is equal to zero.

The expression for cot z is accordingly

J+SfcJnn nnj

The logarithmic derivative of the product expression for

sin s
t given in the preceding article as an example of Weier-

strass's theorem, is

cot * = #'(*)+ ?-+'*[ h Tv z ^- \-2 nn nn J
00

Hence g{z) in that expression is a constant. Making z = o,

its value is seen to be unity.

Prob. 22. From the expression for cot z deduce the equation
+ ec

cosec
8
z = 3> 7 ;*>*Z (z

- nnf
where the summation does not exclude n = o.

Prob. 23. Show that the doubly infinite series jb, vj^

where 00= mao
l -f noo^ ,

defines a function whose only finite critical

points are z = go. This function is Weierstrass's ^-function. (Com-
pare Problem 21.)

Prob. 24. Prove that

JM =~ ^ log <r(*).

J -i^CP

*.M, ^%u

[i$l-M}
s I
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Prob. 25. Prove that '(z) = 2^7 r-3 , where the summa-

tion does not exclude go = o.

Art. 29. Critical Lines and Regions.

The functions whose properties have been considered in the

preceding articles have been assumed to have only isolated

critical points. That an infinite number of critical points may
be grouped together in the neighborhood of a single finite

point is evident, however, from the consideration of such ex-

amples as ^H/^y) "fr*
-

#7/ y -- f'-Vu^ /'
^ r 3

w = cot -
,

/ = ^osec
jr^.-

In the former an infinite number of poles are grouped in the

neighborhood of the origin. In the latter an infinite num-

ber of essential singularities are situated in the vicinity of the

point z = a.

It is easy to illustrate by an example the occurrence of lines

and regions of discontinuity. Take the series *

The sum of its first n terms is

1

* .1 >

z' I

which converges to unity if \z\< I, and to zero if \z\> I.

Hence the circle |*|=I is a line of discontinuity for this C
series.

Consider now any two regions 5t
and S9 ,

the former situated

within, the latter without, the unit circle. Let <p(z) and ip(z)

be two arbitrary functions both completely defined in these

regions. The expression

<P(z)V(z)+ tp(z)[i-0(z)-]

* This series is due to J. Tannery. See Weierstrass, Abhandlungen aus der

Functionenlehre (1886), p. 102.
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will be equal to <p(z) in S
1
and ip(z) in S2

. In regions com-

pletely separated from one another by a critical line, the same

literal expression may thus represent entirely independent

functions.

For a single continuous region, however, in the interior of

which exist only isolated critical points, the character of the

function in one part determines its character in every other

part. Let 5 be such a region, and assume that its boundary is a

critical line. In the neighborhood of any interior point a, not

a critical point, the given function is expressible as a power

series, viz. :

f{z) = /(a) -f (*
-

a)/'(a)+ ... + JfLZi2L/W(,)+ . . .

This series will converge uniformly over a circle described

about a as a center with any determinate radius less than the

distance from a to the nearest critical point. It serves for the

calculation of f(z) and all its successive derivatives at any point

b interior to this circle. From the preceding power series, ac-

cordingly, can be obtained another

M = Ab)+t'~ *)/'(*) + ... + }'~
6y,J^m+ ,

I . 2 . ft

representing the f(z) within a circle described about b as a

center. In general, the point b can be so chosen that a portion

of this new circle will lie without the circle of convergence of

the former power series. At any new point c within the circle

whose center is b, the value of the function and all its succes-

sive derivatives can be calculated
;
and so, as before, a power

series can be obtained convergent in a circle described about c

as a center and, in general, including points not contained in

either of the preceding circles. By continuing in this manner

it will be possible, starting from a given point a with the ex-

pression of f(z) in ascending powers, to obtain an expression of

the same character at any other point k which can be connected

with a by a. continuous line everywhere at a finite distance

from the nearest critical point. It follows that the character of
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the function everywhere within S can be determined completely

from its expression in ascending power series in the neighbor-

hood of a single interior point.

It will be impossible by the process just explained to derive

any information in regard to the function at points exterior to

S. The example given above, furthermore, shows that a com-

plete definition of f(z) within 5 may carry with it the definition

of an entirely independent function without 5.

As an example of a function having a critical region con-

sider the function defined by the series . .,

I + 22+ 2Z* + 2Z* -f- X. ?i +%^ 01+-'

which represents a function without critical points in the

interior of the circle \z\
= I. For points on or without this

circle the series is divergent ; and, further, it is impossible to

obtain from it an expression converging when \z\
=

i. The

function thus defined, consequently, exists only in the region

interior to the unit circle. By changing z into \/z a series

is obtained, representing a function which has no existence in

the interior of the unity circle. Functions in connection with

which such regions arise are called "
lacunary functions." *

Art. 30. Functions Having n Values.

Let the function w =/(z) take at the point z of a given re-

gion 5 a value /0)
. Suppose that along any continuous path,

beginning at z
,
and subject only to the conditions that it shall

remain in the interior of S and shall not pass through certain

isolated points a
t , a%t . . . , w is continuous and has a contin-

uous derivative. If it is impossible, when z traces such a path,

to return to the point z so as to obtain there a value of w dif-

ferent from w{Q
\ w is one-valued in the region S. On the other

*
PoincarS, American Journal of Mathematics, Vol. XIV; Harkness and

Morley, Theory of Functions (1893), p. 119
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hand, certain paths may lead back to z with new values of w.

Suppose that at each point of 5, except a
x ,

<z
a ,

. . . , w has

n different values, and that starting from such a point 8
9
and

tracing any continuous curve not passing through a
t ,

ai9 . , . f

the several values of w give rise to n branches w
x ,
w

% ,
. . .

,
wnT

each of which is characterized by a continuous derivative. In

the neighborhood of ak any one of the points a
x , a% , . . .

these branches are said to be distinct or not, according a? small

closed curves described about this point lead from each value of

w back to the same value again, or cause some of the branches

to interchange values. In the latter case the point is a branch

point.

About any branch point ak as a center describe a small cir-

cle
;
and suppose that, starting from any point of it with the

value wa corresponding to a certain branch, the values

Wp^Wy ... are obtained by successive revolutions about ak ,

the original value being reproduced after p revolutions. In-

troduce now a new independent variable z' such that

z' = (z
- a k)'K

It can be shown that when z makes one revolution about

ak ,
z' makes only one /th part of a revolution about the ori-

gin of the ^-plane, and that to a complete revolution of z
f

about the origin of the ^-plane correspond / revolutions of z

about ak . Considering then the branch wa as a function of z'r

the origin cannot be a branch point, for whenever z' describes

a small circle about it, the value wa is reproduced. The

branch 7va must accordingly be expressible by Laurent's

series in the form
+ 00

hn
y

or, substituting for z' its value,
1 2

Wa = A + A,(z - ak ) + A,(z - atf + . . .

+ A_ 1 (z
- aky*+A_ 2 (z

- akj"*+ . . .

This expression makes plain the relation between the different
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branches of a function in the neighborhood of a branch point.

When the development of a branch in the neighborhood of one

of its branch points gives rise to only a finite number of terms

containing negative powers, the branch point is called a "
polar

branch point."

Consider the functions

P
x
=z Wy + W% + . . . + Wu ,

P
a
= w

l
w

% + w,w3 + . . . + wn _ x
wn ,

Pm = WSiVa . . . w.

Each of these functions is unchanged in value when several or all

of the quantities wxt
w%i . . .

,
wn are interchanged, and is con-

sequently a one-valued function of z within S. Hence w must

satisfy an equation of the th degree,

wn + Pjf-* + p
% of-' + . . . + Pn = o,

the coefficients of which are one-valued functions of z having
only isolated critical points within 5. When the entire ^-plane
can be taken as the region 5, and those branch points at which
the branches do not all remain finite are polar branch points,
the only other critical points being poles for one or more
branches, the functions PH Ptt ..,,Pu are rational functions
of z. In this case w is an algebraic function of z.
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Chapter VII,

DIFFERENTIAL EQUATIONS.

By W. Woolsey Johnson,
Professor of Mathematics in the U. S. Naval Academy.

Art. 1. Equations of First Order and Degree.

In the Integral Calculus, supposing y to denote an unknown

function of the independent variable x, the derivative of y with

respect to x is given in the form of a function of x, and it is

required to find the value of y as a function of x. In other

words, given an equation of the form

%=A*\ r dy = Ax)dx, (i)

of which the general solution is written in the form

y = /A*)**, (2)

it is the object of the Integral Calculus to reduce the expres-

sion in the second member of equation (2) to the form of a

known function of x. When such reduction is not possible,

the equation serves to define a new function of x.

In the extension of the processes of integration of which

the following pages give a sketch the given expression for the

derivative may involve not only x, but the unknown function

y ; or, to write the equation in a form analogous to equation

(1), it may be
Mdx + Ndy = o, (3)

in which M and N are functions of x and y. This equation is

in fact the general form of the differential equation of the first

order and degree ;
either variable being taken as the independ-

ent variable, it gives the first derivative of the other variable
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in terms of x and y. So also the solution is not necessarily an

expression of either variable as a function of the other, but is.

generally a relation between x and y which makes either an.

implicit function of the other.

When we recognize the left member of equation (3) as an
" exact differential," that is, the differential of some function o

x and ys
the solution is obvious. For example, given the equa-

tion

xdy -\-ydx = o, (4)

the solution xy = C, (5)

where C is an arbitrary constant, is obtained by
" direct inte-

gration." When a particular value is attributed to C, the result

is a "
particular integral ;

"
thus

jj/
= x'1

is a particular integral

of equation (4), while the more general relation expressed by-

equation (5) is known as the "
complete integral."

In general, the given expression Mdx -\- Ndy is not an ex-

act differential, and it is necessary to find some less direct

method of solution.

The most obvious method of solving a differential equation,

of the first order and degree is, when practicable, to "
separate

the variables," so that the coefficient of dx shall contain x

only, and that of dy, y only. For example, given the equation

(1
- y)dx + (1 + x)dy = o, (6)

the variables are separated by dividing by (1 -\- x)(i y).

T ,
dx dyThus : h =l_ o,

I -\-x
'

1 y

Each term is now directly integrable, and hence

log (1 +x) log (1 y) = c.

The solution here presents itself in a transcendental form,,

but it is readily reduced to an algebraic form. For, taking the

exponential of each member, we find

' = e = C, whence 1 -L- x = C(i y), (7>

where C is put for the constant ^.
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To verify the result in this form we notice that differentia-

tion gives dx = Cdy, and substituting in equation (6) we find

-
C{i -y)+i+x = o,

which is true by equation (7).

Prob. 1. Solve the equation dy -\-y tan x dx = o.

(Ans. y=C cos x.)

Prob. 2. Solve $- + py = a\ /Ans>
bl+A _ ^ax\

dx J
\ by a j

Prob. 3. Solve f- = ^}-. (Ans. y = ^)dx x +1 \
y

1 ex j

Prob. 4. Helmholtz's equation for the strength of an electric

current C at the time / is

C- - -~
r r dr

where
, R, and L are given constants. Find the value of C, de-

termining the constant of integration by the condition that its initial

value shall be zero.

Art. 2. Geometrical Representation.

The meaning of a differential equation may be graphically

illustrated by supposing simultaneous values of x and y to be

the rectangular coordinates of a variable point. It is conven-

ient to put/ for the value of the ratio dy : dx. Then P being
the moving point (x, y) and <p denoting the inclination of its

path to the axis of x, we have

dy
p = -f- = tan 0.* dx

The given differential equation of the first order is a relation

between p, x y
and y, and, being of the first degree with respect

to/, determines in general a single value of p for any assumed

values of x and y. Suppose in the first place that, in addition

to the differential equation, we were given one pair of simul-

taneous values of x and y y
that is, one position of the point P.

Now let P start from this fixed initial point and begin to move
in either direction along the straight line whose inclination
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is determined by the value of p corresponding to the initial

values of x andjj/. We thus have a moving point satisfying

the given differential equation. As the point P moves the

values of x and y vary, and we must suppose the direction of

its motion to vary in such a way that the simultaneous values

of x, y, and p continue to satisfy the differential equation. In

that case, the path of the moving point is said to satisfy the

differential equation. The point P may return to its initial

position, thus describing a closed curve, or it may pass to infin-

ity in each direction from the initial point describing an infinite

branch of a curve.* The ordinary cartesian equation of the

path of Pis a particular integral of the differential equation.

If no pair of associated values of x and y be known, Pmay
be assumed to start from any initial point, so that there is an

unlimited number of curves representing particular integrals

of the equation. These form a "system of curves," and the

complete integral is the equation of the system in the usual

form of a relation between x, y> and an arbitrary
"
parameter."

This parameter is of course the constant of integration. It is

constant for any one curve of the system, and different values

of it determine different members of the system of curves, or

different particular integrals.

As an illustration, let us take equation (4) of Art. 1, which

may be written

dy y
dx

~
x'

Denoting by 6 the inclination to

the axis of x of the line joining P
with the origin, the equation is

equivalent to tan = tan 0, and

therefore expresses that P moves

in a direction inclined equally with

OP to either axis, but on the other

* When the form of the functions M and AT is unrestricted, there is no

reason why either of these cases should exist, but they commonly occur among
such differential equations as admit of solution.
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side. Starting from any position in the plane, the point P
thus moving must describe a branch of an hyperbola having

the two axes as its asymptotes ; accordingly, the complete

integral xy = C is the equation of the system consisting of

these hyperbolas.

Prob. 5. Write the differential equation which requires P to move
in a direction always perpendicular to OP, and thence derive the

equation of the system of curves described.

Prob. 6. What is the system described when is the comple-
ment of 6 ? (Ans. x*/=Q

Prob. 7. If = 26, show geometrically that the system described

consists of circles, and find the differential equation.

(Ans. 2xydx = (x* y*)dy.)

Art. 3. Primitive of a Differential Equation.

Let us now suppose an ordinary relation between x and y,

which may be represented by a curve, to be given. By differ-

entiation we may obtain an equation of which the given equa-

tion is of course a solution or particular integral. But by

combining this with the given equation any number of differ-

ential equations of which the given equation is a solution may
be found. For example, from

y = m(x a) (1)
we obtain directly

2ydy = mdx
t (2)

of which equation (1) is an integral; again, dividing (2) by (1)

we have

2dy dx

y
=
JZT^ (3)

and of this equation also (1) is an integral.

If in equation (1) w be regarded as an arbitrary parameter,
it is the equation of a system of parabolas having a common
axis and vertex. The differential equation (3), which does not

contain m, is satisfied by every member of this system of curves.
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Hence equation (i) thus regarded is the complete integral of

equation (3), as will be found by solving the equation in which

the variables are already separated.

Now equation (3) is obviously the only differential equation

independent of m which could be derived from (1) and (2), since

it is the result of eliminating m. It is therefore the "
differ-

ential equation of the system ;

"
and in this point of view the

integral equation (1) is said to be its "primitive."

Again, if in equation (1) a be regarded as the arbitrary con-

stant, it is the equation of a system of equal parabolas having
a common axis. Now equation (2) which does not contain a

is satisfied by every member of this system of curves; hence it

is the differential equation of the system, and its primitive is

equation (1) with a regarded as the arbitrary constant.

Thus, a primitive is an equation containing as well as x and

y an arbitrary constant, which we may denote by C, and the

corresponding differential equation is a relation between x, yr

and p, which is found by differentiation, and elimination of C if

necessary. This is therefore also a method of verifying the com-

plete integral of a given differential equation. For example, in

verifying the complete integral (7) in Art. I we obtain by differ-

entiation 1 = Cp. If we use this to eliminate C from equa-

tion (7) the result is equation (6); whereas the process before

employed was equivalent to eliminating p from equation (6),

thereby reproducing equation (7).

Prob. 8. Write the equation of the system of circles in Prob. 7,

Art. 2, and derive the differential equation from it as a primitive.

Prob. 9. Write the equation of the system of circles passing

through the points (o, b) and (o, b), and derive from it the differ-

ential equation of the system.

Art. 4. Exact Differential Equations.

In Art. I the case is mentioned in which Mdx -f- Ndy is an
" exact differential," that is, the differential of a function of x

andjy. Let u denote this function; then

du Mdx -\-.Ndy, (1)
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and in the notation of partial derivatives

M= dA N^P.d* dy

Then, since by a theorem of partial derivatives
dydx dxdy

dy d*
' y J

This condition must therefore be fulfilled by M and N in

order that equation (i) may be possible. When it is fulfilled

Mdx -\- Ndy = o is said to be an " exact differential equation,"

and its complete integral is

u = C. (3)

For example, given the equation

x(x -\- 2y)dx + (** /)dy = o,

M x{x -\- 2y), N = x* y\ = 2#, and = 2x
;
the

condition (2) is fulfilled, and the equation is exact. To find the

function u, we may integrate Mdx, treating^/ as a constant; thus,

in which the constant of integration Y may be a function of y.

The result of differentiating this is

x*dx + zxy dx -|- x*dy = dY,

which should be identical with the given equation ; therefore,

dY y^dy, whence Y = \y
% + C, and substituting, the com-

plete integral may be written

The result is more readily obtained if we notice that all

terms containing x and dx only, or y and dy only, are exact

differentials
;
hence it is only necessary to examine the terms

containing both x and y. In the present case, these are

2xy dx -f- x*dy, which obviously form the differential of x*y ;

whence, integrating and multiplying by 3, we obtain the result

above.

The complete integral of any equation, in whatever way it
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was found, can be put in the form u C, by solving for C.

Hence an exact differential equation du = o can be obtained,

which must be equivalent to the given equation

Mdx + Ndy = o, (4)

here supposed not to be exact. The exact equation du = o

must therefore be of the form

ju(Mdx + Ndy) = o, (5)

where }x is a factor containing at least one of the variables x

and y. Such a factor is called an "
integrating factor" of the

given equation. For example, the result of differentiating

equation (7), Art. I, when put in the form u = C, is

(1 -y)dx-\-{\ + x)dy _
(1 -J)

3 '

so that (1 y)~
a

is an integrating factor of equation (6). It

is to be noticed that the factor by which we separated the

variables, namely, (1 y)~\i x)~\ is also an integrating

factor.

It follows that if an integrating factor can be discovered,

the given differential equation can at once be solved.* Such

a factor is sometimes suggested by the form of the equation.

Thus, given (y x)dy-\-ydx = o,

the terms ydx xdy, which contain both x and y, are not ex-

act, but become so when divided by either x* or y*; and be-

cause the remaining term contains y only, y~* is an integrating

factor of the whole expression. The resulting integral is

^ogy+ ^
= C.

Prob. 10. Show from the integral equation in Prob. 9, Art. 3, that

x~* is an integrating factor of the differential equation.

Prob. ii. Solve the equation x(x
x + $y*)dx -\-yiy

1 + 3^)dy = o.

(Ans. x* + 6xY +/ = c.)

* Since juM and #iVin the exact equation (5) must satisfy the condition (2) r

we have a partial differential equation for ju; but as a general method of finding

fl this simply comes back to the solution of the original equation.
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Prob. 12. Solve the equation ydy-\-xdx-\ \ 5.

(Am.
^t^ + tan"

1 ^*.)
2 x

Prob. 13. If u = c is a form of the complete integral and /* the

corresponding integrating factor, show that m/(u) is tne general

expression for the integrating factors.

Prob. 14. Show that the expression xa
yP(mydx + nxdy) has the

integrating factor xkm ~ 1 ~ a
y
kn ~ 1

~P; and by means of such a factor

solve the equation y(y
3

-f- 2x
4

)dx + *(** 2y)</y = o.

(Ans. 2x*y y* = ^.)
Prob. 15. Solve (x* -\- y'*)dx 2xydy = o. (Ans. x* y*

=
ex.)

Art. 5. Homogeneous Equation.

The differential equation Mdx + iVi/y = is said to be

homogeneous when M and N are homogeneous functions of

x and j of the same degree ; or, what is the same thing, when

dy y
t- is expressible as a function of -. If in such an equation

the variables are changed from x and y to x and v, where

y
v =

;
whence y = xv and dy = xdv -\- vdx,

the variables x and v will be separable. For example, the

equation
(x 2y)dx -|- ydy = o

is homogeneous ; making the substitutions indicated and

dividing by x,

(1 2v)dx -f- v(xdv -f- vdx) = o,

dx vdv
whence h 7 -~ o.

x s

{v \f

Integrating, log x + log (v 1) ^
- = C;

and restoring^/,

The equation Mdx -f- Afa^/ = o can always be solved when

log (y x) = C.& Ky '

y x
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M and N are functions of the first degree, that is, when it is

of the form

(ax + by + c)dx -\- (a!x + b'y + c')dy = o.

For, assuming x = x r

-\- h, y = y
r

-\- k, it becomes

(ax'+ b'y'+ ah + bk+c)dx'+{a'x'+ b'y'+a
f

h+b'k+c')dy'=or

which, by properly determining h and k, becomes

{ax' + by')dx' + (a'x' + b'y')dy',

a homogeneous equation.

This method fails when a: b = a' : b', that is, when the

equation takes the form

{ax -{- by+ )*&"+ [w(^^ + ^) + </]d^/
= o

;

but in this case if we put z = ax -f- ^, and eliminate
jj>,

it will

be found that the variables x and z can be separated.

Prob. 16. Show that a homogeneous differential equation repre-

sents a system of similar and similarly situated curves, the origin

being the center of similitude, and hence that the complete integral

may be written in a form homogeneous in x, y, and c.

Prob. 17. Solve xdy y dx ^(x* -f y*)dx = o.

(Ans. x* = c
2

2cy.)

Prob. 18. Solve ($y >jx -f- i)dx -j- (jy 3^ -f- 3)^ =; o.

(Ans. (7
- * + i)\y + * - i)

5 =
f.)

Prob. 19. Solve (x
2

-\- y*)dx 2xy dy = o. (Ans. .r
2

y* = ex.)

Prob. 20. Solve (1 + xy)ydx + (1 xy)xdy = o by introducing

the new variable 2 = xy. (Ans. a; = Cye*y.)

Prob. 21. Solve
-j-=ax+ by+c. (Ans. abx+&y-\-a-\-bc=Ce

bx
.)

Art. 6. The Linear Equation.

A differential equation is said to be " linear
" when (one of

the variables, say x, being regarded as independent,) it is of

the first degree with respect to y, and its derivatives. The
linear equation of the first order may therefore be written in

the form
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where P and Q are functions of x only. Since the second

member is a function of x, an integrating factor of the first

member will be an integrating factor of the equation provided

it contains x only. To find such a factor, we solve the equation

+/>-
dy

which is done by separating the variables ; thus, = Pdx ;

whence log^ = c / Pdx or

y = Ce-f**. (3)

Putting this equation in the form u = c, the corresponding
exact equation is

e*
Pd

*(dy + Pydx) = o,

whence r
*

is the integrating factor required. Using this

factor, the general solution of equation (i) is

efpdxy =f/
Pdx
Qdx + C. (4)

In a given example the integrating factor should of course

be simplified in form if possible. Thus

(i + x*)dy = {m-\- xy)dx

Is a linear equation for y ; reduced to the form (i), it is

dy x m
\y =dx i+x^ i+x*'

from which

/ , n x dx i , , . ,

The integrating factor is, therefore,

efPdx =

whence the exact equation is

dy xy dx mdx

v(i + **) (i + o'~(i+*')j
'
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Integrating, there is found

y _ *
, r

or

y = mx + CV(l + x*).

An equation is sometimes obviously linear, not forj, but

for some function of y. For example, the equation

dy
-y- -f- tan y = x sec ^

when multiplied by cos y takes a form linear for sin y ;
the

integrating factor is e*, and the complete integral

sin y = x i -\- ce
~ x

.

dy
In particular, the equation -j- -f- Py = Qy

n
, which is known as

" the extension of the linear equation," is readily put in a form

linear for j
I_n

.

dy *

Prob. 22. Solve xa + (i 2x)y = x\ (Ans. y = x*(i + ***).)

Prob. 23. Solve cos x~- -\-y 1 -|- sin x = o.

(Ans. jy(sec ^ + tan x) = x + .)

Prob. 24. Solve cos ^ -f- y sin x = 1.
</#

(Ans. y = sin x -\- c cos #.)

Prob. 25. Solve = x*y* xy. (Ans. -5
= x* + 1 +^*.)

Prob. 26. Solve ^ = i
,-,. (Ans.

- = 2 - v
f+ ce~h>\\

dx xy + y x * '

Art. 7. First Order and Second Degree.

If the given differential equation of the first order, or re-

lation between x, y, and p, is a quadratic for p, the first step

in the solution is usually to solve for p. The resulting value

of / will generally involve an irrational function of x and y;
so that an equation expressing such a value of p, like some of

those solved in the preceding pages, is not properly to be re-
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garded as an equation of the first degree. In the exceptional

case when the expression whose root is to be extracted is a

perfect square, the equation is decomposable into two equa-

tions properly of the first degree. For example, the equation

*y(i+4/) = 2A*'+f)
y x

when solved for p gives 2p = -, or 2p = -; it may therefore
x y

be written in the form

(2px - y)(2py
-

x) = o,

and is satisfied by putting either

dy y dy x
dx 2x dx 2y

The integrals of these equations are

y* = ex and 2y
l

x* = C,

and these form two entirely distinct solutions of the given

equation.

As an illustration of the general case, let us take the equation

*/'=/, or %= (I)

Separating the variables and integrating,

\/xVy=V~c,
'

(2)

and this equation rationalized becomes

{*
- yf - 2c(x + y) + c* = o. (3)

There is thus a single complete integral containing one arbi-

trary constant and representing a single system of curves;

namely, in this case, a system of parabolas touching each axis

at the same distance c from the origin. The separate equa-
tions given in the form (2) are merely branches of the same

parabola.

Recurring now to the geometrical interpretation of a differ-

ential equation, as given in Art. 2, it was stated that an equa-

tion of the first degree determines, in general, for assumed

values of x and y, that is, at a selected point in the plane, a

single value of p. The equation was, of course, then supposed
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rational in x and y* The only exceptions occur at points for

which the value of p takes the indeterminate form
; that is,

the equation being Mdx -\- Ndy = o, at points (if any exist)

for which M = o and N = o. It follows that, except at such

points, no two curves of the system representing the complete

integral intersect, while through such points an unlimited num-

ber of the curves may pass, forming a "
pencil of curves." f

On the other hand, in the case of an equation of the second

degree, there will in general be two values of p for any given

point. Thus from equation (i) above we find for the point

{4, 1), p = J-;
there are therefore two directions in which a

point starting from the position (4, 1) may move while satis-

fying the differential equation. The curves thus described

represent two of the particular integrals. If the same values

of x and y be substituted in the complete integral (3), the re-

sult is a quadratic for c, giving c = 9 and c = I, and these

determine the two particular integral curves, Vx -j- Vy = 3,

and Vx Vy = 1.

In like manner the general equation of the second degree,

which may be written in the form

Lp
% + Mp + N = o,

where L, M, and N are one-valued functions of x and y, repre-

sents a system of curves of which two intersect in any given

point for which p is found to have two real values. For these

points, therefore, the complete integral should generally give

two real values of c. Accordingly we may assume, as the

standard form of its -equation,

P<*+ Qc+R = o,

* In fact p was supposed to be a one-valued function of x and y\ thus,

P -=s\vr xx would not in this connection be regarded as an equation of the first

degree.

f In Prob. 6, Art. 3, the integral equation represents the pencil of circles pass-

ing through the points (o, b) and (o, b)\ accordingly/ in the differential equa-

tion is indeterminate at these points. In some cases, however, such a point is

merely a node of one particular integral. Thus in the illustration given in Art. 2,

J> is indeterminate at the origin, and this point is a node of the only particular

integral, xy = o, which passes through it.
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where P> Q, and R are also one-valued functions of x and y.
If there are points which make p imaginary in the differential

equation, they will also make c imaginary in the integral.

Prob. 27. Solve the equation p* +y = i and reduce the inte-

gral to the standard form.

(Ans. (y -j- cos x)c* 2c sin x -f- y cos x = o.)

Prob. 28. Solve yp
2 + 2xp y o, and show that the intersect-

ing curves at any given point cut at right angles.

Prob. 29. Solve (x* + i)p*
= i. (Ans. <rV

v
%cx0 = i.)

Art. 8. Singular Solutions.

A differential equation not of the first degree sometimes

admits of what is called a "
singular solution

;

"
that is to say, a

solution which is not included in the complete integral. For

suppose that the system of curves representing the complete

integral has an envelope. Every point A of this envelope
is a point of contact with a particular curve of the complete in-

tegral system ;
therefore a point moving in the envelope when

passing through A has the same values of x, y, and / as if it

were moving through A in the particular integral curve. Hence

such a point satisfies the differential equation and will continue

to satisfy it as long as it moves in the envelope. The equation

of the envelope is therefore a solution of the equation.

As an illustration, let us take the system of straight lines

whose equation is

y = cx + ", (l>

where c is the arbitrary parameter. The differential equation-

derived from this primitive is

*=/*+-, (2>
P

of which therefore (i) is the complete integral.

Now the lines represented by equation (i), for different

values of c% are the tangents to the parabola

/ = 4**. (S)
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A point moving in this parabola has the same value of/ as if it

were moving in one of the tan-

gents, and accordingly equation

(3) will be found to satisfy the

differential equation (2).

It will be noticed that for

any point on the convex side of

the parabola there are two real

values of p ;
for a point on the

other side the values of p are

imaginary, and for a point on

the curve they are equal. Thus

its equation (3) expresses the

relation between x and y which must exist in order that (2)

regarded as a quadratic for p may have equal roots, as will be

seen on solving that equation.

In general, writing the differential equation in the form

Lf + Mp +N = o, (4)

the condition of equal roots is

M1 -\LN = o. (5)

The first member of this equation, which is the " discrimi-

nant
"

of equation (4), frequently admits of separation into

factors rational in x and y. Hence, if there be a singular solu-

tion, its equation will be found by putting the discriminant of

the differential equation, or one of its factors, equal to zero.

It does not follow that every such equation represents a solu-

tion of the differential equation. It can only be inferred that

it is a locus of points for which the two values of / become

equal. Now suppose that two distinct particular integral

curves touch each other. At the point of contact, the two

values of/, usually distinct, become equal. The locus of such

points is called a " tac-locus." Its equation plainly satisfies the

discriminant, but does not satisfy the differential equation. An
illustration is afforded by the equation
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of which the complete integral is y* -f- (x cf = a*, and the

discriminant, see equation (5), is y*(y
t # 2

) s= o.

This is satisfied by y = a, y = a, and y = o, the first two

of which satisfy the differential equation, while y = o does not.

The complete integral represents in this case all circles of radius

a with center on the axis of x. Two of these circles touch at

every point of the axis of x, which is thus a tac-locus, while

y = a and y = a constitute the envelope.

The discriminant is the quantity which appears under the

radical sign when the general equation (4) is solved for/, and

therefore it changes sign as we cross the envelope. But the

values of / remain real as we cross the tac-locus, so that the

discriminant cannot change sign. Accordingly the factor which

indicates a tac-locus appears with an even exponent (as y
1

in

the example above), whereas the factor indicating the singular

solution appears as a simple factor, or with an odd exponent.

A simple factor of the discriminant, or one with an odd ex-

ponent, gives in fact always the boundary between a region of

the plane in which/ is real and one in which/ is imaginary ;

nevertheless it may not give a singular solution. For the two

arcs of particular integral curves which intersect in a point on

the real side of the boundary may, as the point is brought up
to the boundary, become tangent to each other, but not to the

boundary curve. In that case, since they cannot cross the

boundary, they become branches of the same particular inte-

gral forming a cusp. A boundary curve of this character is

called a "
cusp-locus

"
;
the value of p for a point moving in it

is of course different from the equal values of/ at the cusp, and

therefore its equation does not satisfy the differential equation.*

Prob. 30. To what curve is the line y = mx -f- a |/(i w a

)

always tangent ? (Ans. jp * x* = a
3

.)

Prob. 31. Show that the discriminant of a decomposable differ-

* Since there is no reason why the values of/ referred to should be identical,

we conclude that the equation Lp* -f- Mp -f- N= o has not in general a singular

solution, its discriminant representing a cusp-locus except when a certain con-

dition is fulfilled.
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ential equation cannot be negative. Interpret the result of equating
it to zero in the illustrative example at the beginning of Art. 7.

Prob. 32. Show that the singular solutions of a homogeneous dif-

ferential equation represent straight lines passing through the origin..

Prob. 33. Solve the equation xp* 2yp + ax o.

(Ans. x2

2cy-\- ac* = o
; singular solution y* = ax"*,}

Prob. 34. Show that the equation/* + 2Xp y=o has no sin-

gular solution, but has a cusp-locus, and that the tangent at every

cusp passes through the origin.

Art. 9. Singular Solution from Complete Integral.

When the complete integral of a differential equation of

the second degree has been found in the standard form

PS+Qc+R = o (!)

(see the end of Art. 7), the substitution of special values of x
and y in the functions P, Q, and R gives a quadratic for c whose

roots determine the two particular curves of the system which

pass through a given point. If there is a singular solution,,

that is, if the system of curves has an envelope, the two

curves which usually intersect become identical when the given

point is moved up to the envelope. Every point on the en-

velope therefore satisfies the condition of equal roots for equa-

tion (1), which is

ff- 4P = o; (2>

and, reasoning exactly as in Art. 8, we infer that the equation

of the singular solution will be found by equating to zero the

discriminant of the equation in c or one of its factors. Thus

the discriminant of equation (1), Art. 8, or "
^-discriminant," is

the same as the "/-discriminant," namely, y
1

4axy
which

equated to zero is the equation of the envelope of the system of

straight lines.

But, as in the case of the /-discriminant, it must not be

inferred that every factor gives a singular solution. For ex-

ample, suppose a squared factor appears in the ^-discriminant.

The locus on which this factor vanishes is not a curve in cross-

ing which c and / become imaginary. At any point of it there
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will be two distinct values of p, corresponding to arcs of par-

ticular integral curves passing through that point ; but, since-

there is but one value of c, these arcs belong to the same par-

ticular integral, hence the point is a double point or node.

The locus is therefore called a " node-locus." The factor repre-

senting it does not appear in the /-discriminant, just as that

representing a tac-locus does not appear in the ^-discriminant.

Again, at any point of a cusp-locus, as shown at the end of

Art. 8, the two branches of particular integrals become arcs of

the same particular integral ;
the values of c become equal, so*

that a cusp-locus also makes the ^-discriminant vanish.

The conclusions established above obviously apply also ta

equations of a degree higher than the second. In the case of

the ^-equation the general method of obtaining the condition

for equal roots, which is to eliminate c between the original and

the derived equation, is the same as the process of finding the

envelope or " locus of the ultimate intersections
"
of a system.

of curves in which c is the arbitrary parameter.

Now suppose the system of curves to have for all values of

c* a double point, it is obvious that among the intersections

of two neighboring curves there are two in the neighborhood-

of the nodes, and that ultimately they coincide with the node,,

which accounts for the node-locus appearing twice in the dis-

criminant or locus of ultimate intersections. In like manner,,

* It is noticed in the second foot-note to Art. 7 that for an equation of the

first degree p takes the indeterminate form, not only at a point through which all

curves of the system pass (where the value of c would also be found indeter-

minate), but at a node of a particular integral. So also when the equation is of

the th degree, if there is a node for a particular value of c, the n values of c at.

the point (which is not on a node-locus where two values of c are equal) deter-

mine -f- 1 arcs of particular integrals passing through the point; and there*--

fore there are n -j- 1 distinct values of p at the point, which can only happen :

when p takes the indeterminate form, that is to say, when all the coefficients of

the /-equation Cwhich is of the nth degreed vanish. See Cayley on Singular So-

lutions in the "Messenger of Mathematics. New Series, Vol. II, p; 10. (Collected-

Mathematical Works, Vol. VIII, p. 529). The present t-neory of Singular Solu-

tionswas established by Cayley in this paper and its continuation, Vol. VI, p. 33^

Sec also a paper by Dr. Glaisher, Vol. XII, p. 1.
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if there is a cusp for all values of c, there are three intersections

of neighboring curves (all of which may be real) which ulti-

mately coincide with the cusp; therefore a cusp-locus 'will

appear as a cubed factor in the discriminant.*

Prob. 35. Show that the singular solutions of a homogeneous

equation must be straight lines passing through the origin.

Prob. 36. Solve 3/V 2xjp + 4/ x" = o, and show that there

is a singular solution and a tac-focus.

Prob. 37. Solve yp* -j- 2Xp y = o, and show that there is an

imaginary singular solution. (Ans. y
1 = 2cx -f- c

2

.)

Prob. 38. Show that the equation (1 x2

)p'
2 = 1 y

2

represents

a system of conies touching the four sides of a square.

Prob. 39. Solve yp* \xp -\-y
= o

;
examine and interpret both

discriminants. (Ans. f -f- 2cx{$y* 8*
2

) $x
3

y* -\-y*
=

o.)

Art. 10. Solution by Differentiation.

The result of differentiating a given differential equation of

the first order is an equation of the second order, that is, it

d %y
contains the derivative -*-? ; but, if it does not contain y ex-

plicitly, it may be regarded as an equation of the first order for

the variables x and/. If the integral of such an equation can

be obtained it will be a relation between x, p, and a constant

of integration c, by means of which p can be eliminated from

the original equation, thus giving the relation between x, yf

and c which constitutes the complete integral. For example,

the equation

j|+ **=*+/; (1)

* The discriminant of Pc* + Qc -f- R = o represents in general an envelope,

no further condition requiring to be fulfilled as in the case of the discriminant

of Lp*
1

-f- Mp -f- N = o. Compare the foot-note to Art. 8. Therefore where

there is an integral of this form there is generally a singular solution, although

Ip* -j- Mp -J- ^V = o has not in general a singular solution. We conclude, there-

fore, that this equation (in which Z, M, and N are one-valued functions of x

and y) has not in general an integral of the above form in which P, Q, and R
are one-valued functions of x and y. Cayley, Messenger of Mathematics, New

.Series, Vol. VI, p. 23.
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when solved forjy, becomes

y = x+ ltf; (2)

whence by differentiation

The variables can be separated in this equation, and its inte-

gral is

I +^-I- (3)

vp-
c -

C - e"

Substituting in equation (2), we find

. 6+>
y x ~\ q _ e

w

which is the complete integral of equation (1).

This method sometimes succeeds with equations of a higher

degree when the solution with respect to p is impossible or

leads to a form which cannot be integrated. A differential

equation between p and one of the two variables will be ob-

tained by direct integration when only one of the variables is

explicitly present in the equation, and also when the equation

is of the first degree with respect to x and y. In the latter

case after dividing by the coefficient of y, the result of differ-

entiation will be a linear equation for x as a function of p, so

that an expression for x in terms of p can be found, and then

by substitution in the given equation an expression for y in

terms of p. Hence, in this case, any number of simultaneous

values of x and y can be found, although the elimination of p
may be impracticable.

In particular, a homogeneous equation which cannot be

solved for p may be soluble for the ratio y : x, so as to assume

the form y = x<p(p). The result of differentiation is

p=<t>{p)+x<p\pf>

in which the variables x and p can be separated.

Another special case is of the form

y = P*+AP), (1)



324 DIFFERENTIAL EQUATIONS. [Chaf- VII.

which is known as Clairaut's equation. The result of differ-

entiation is

which implies either

dp
* +f'(p) =o, or -=0.

The elimination of / from equation (i) by means of the

first of these equations
*
gives a solution containing no arbi-

trary constant, that is, a singular solution. The second is a.

differential equation for p ;
its integral is p = c, which in

equation (i) gives the complete integral

y = c*+A<)- (2)

This complete integral represents a system of straight lines,

the singular solution representing the curve to which they are

.all tangent. An example has already been given in Art. 8.

A differential equation is sometimes reducible to Clairaut's

form by means of a more or less obvious transformation of the

variables. It may be noticed in particular that an equation of

the form

y = nxp + 00, /)

is sometimes so reducible by transformation to the independent
variable z, where x = zn

;
and an equation of the form

y = nxp+<t>{y>P)y

by transformation to the new dependent variable v = y
n

. A
double transformation of the form indicated may succeed

when the last term is a function of both x and jj/as well as of p.

Prob. 40. Solve the equation 7>V
= *P

% + 3/
2

;
find a singular

solution and a cusp-locus. (Ans. (x-\-y -j- c i)* = -(x-\-c)*,)

a
Prob. 41. Solve 2V = xp -\ ,

and find a cusp-locus.
P

(Ans. V \2acxy -f 8ry
3

\2x1

y
l + i6ax* = o.)

* The equation is in fact the same that arises in the general method for the

condition of equal roots. See Art. 9.
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Prob. 42. Solve (x* a*)/? 2xyp -\- y* a* = o.

(Ans. The circle x 1 + / = #a

,
and its tangents.)

Prob. 43. Solve ,y
= xp + x*p* .

(Ans. <:V -J- ^ #y = o, and 1 + ^x*y = o.)

Prob. 44. Solve /
s

4#>p -f- 8y* = o.

(Ans. 7 = c(x c)*; 2jy = 4X* andjy = o are singulai

solutions; y = o is also a particular integral.)

Prob. 45. Solve x\y px) =yp\ (Ans. f ex 1 + c\)

Art. 11. Geometric Applications
; Trajectories.

Every property of a curve which involves the direction of

its tangents admits of statement in the form of a differential

equation. The solution of such an equation therefore deter-

mines the curve having the given property. Thus, let it be

required to determine the curve in which the angle between

the radius vector and the tangent is n times* the vectorial

angle. Using the expression for the trigonometric tangent of

that angle, the expression of the property in polar coordi-

nates is

= tan nd.
dr

Separating the variables and integrating, the complete

integral is

rn = c
n
sin nd.

The mode in which the constant of integration enters here

shows that the property in question is shared by all the mem-
bers of a system of similar curves.

The solution of a question of this nature will thus in gen-

eral be a system of curves, the complete integral of a differential

equation, but it may be a singular solution. Thus, if we ex-

press the property that the sum of the intercepts on the axes

made by the tangent to a curve is equal to the constant a, the

straight lines making such intercepts will themselves consti-

tute the complete integral system, and the curve required is

the singular solution, which, in accordance with Art. 8, is the
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envelope of these lines. The result in this case will be found

to be the parabola Vx + Vy = Va.

An important application is the determination of the

"orthogonal trajectories" of a given system of curves, that is

to say, the curves which cut at right angles everyvcurve of the

given system. The differential equation of the trajectory is

readily derived from that of the gfven system ;
for at every

point of the trajectory the value of pis the negative reciprocal

of its value in the given differential equation. We have there-

fore only to substitute p~
l

for / to obtain the differential

equation of the trajectory. For example, let it be required to

determine the orthogonal trajectories of the system of pa-

rabolas

having a common axis and vertex. The differential equation

of the system found by eliminating a is

2 xdy = y dx.

Putting in place of -~, the differential equation of

dy dx

the system of trajectories is

2xdx -\-ydy = o,

whence, integrating,

2x*+y* = c\

The trajectories are therefore a system of similar ellipses

with axes coinciding with the coordinate axes.

Prob. 46. Show that when the differential equation of a system

is of the second degree, its discriminant and that of its trajectory

system will be identical ;
but if it represents a singular solution in

one system, it will constitute a cusp locus of the other.

Prob. 47. Determine the curve whose subtangent is constant and

equal to a. (Ans. ce*=y.)

Prob. 48. Show that the orthogonal trajectories of the curves

rM=cn sinnB are the same system turned through the angle about

the pole. Examine the cases n = 1, n = 2, and n -J.

Prob. 49. Show that the orthogonal trajectories of a system of
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circles passing through two given points is another system of circles.

having a common radical axis.

Prob. 50. Determine the curve such that the area inclosed

by any two ordinates, the curve and the axis of x, is equal to

the product of the arc and the constant line a. Interpret the

singular solution. - --

(Ans. The catenary^ c= \a{e
a

e
a
).)

Prob. 51. Show that a system of confocal conies is self-orthog-
onal.

Art. 12. Simultaneous Differential Equations.

A system of n equations between n -f- 1 variables and their

differentials is a "determinate" differential system, because it

serves to determine the'/z ratios of the differentials; so that,

taking any one of the variables as independent, the others vary
in a determinate manner, and may be regarded as functions of

the single independent variable. Denoting the variables by x,

y> z> etc., the system may be written in the symmetrical form

dx _dy dz _
X~Y~~Z~ '

where X, F, Z . . . may be any functions of the variables.

If any one of the several equations involving two differen-

tials contains only the two corresponding variables, it is an

ordinary differential equation ;
and its integral, giving a re-

lation between these two variables, may enable us by elimina-

tion to obtain another equation containing two variables only,

and so on until n integral equations have been obtained.

Given, for example, the system
dx _dy _ dz . .

x
" '

z
~~

y
' >'*

The relation between dy and dz above contains the varia-

bles^/ and z only, and its integral is

y* z1 = a. (2)

Employing this to eliminate z from the relation between

dx and dy it becomes
dx _ dy
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ot which the integral is

y-Y V .(/ + a) = bx. (3)

The integral equations (2) and (3), involving two constants

of integration, constitute the complete solution. It is in like

manner obvious that the complete solution of a system of n

equations should contain n arbitrary constants.

Confining ourselves now to the case of three variables, an

-extension of the geometrical interpretation given in Art. 2

presents itself. Let x, y, and z be rectangular coordinates of

Preferred to three planes. Then, if P starts from any given

position A, the given system of equations, determining the

ratios dx: dy\ dz, determines the direction in space in which P
moves. As P moves, the ratios of the differentials (as deter-

mined by the given equations) will vary, and if we suppose P
to move in such a way as to continue to satisfy the differential

equations, it will describe in general a curve of double curva-

ture which will represent a particular solution. The complete

solution is represented by the system of lines which may be

thus obtained by varying the position of the initial point A.

This system is a "
doubly infinite

" one
;
for the two relations

between x, y, and z which define it analytically must contain

two arbitrary parameters, by properly determining which we

can make the line pass through any assumed initial point.*

Each of the relations between x, y and z, or integral equa-

tions, represents by itself a surface, the intersection of the two

.-surfaces being a particular line of the doubly infinite system.

An equation like (2) in the example above, which contains only

one of the constants of integration, is called an integral of the

^differential system, in contradistinction to an "
integral equa-

*lt is assumed in the explanation that X, V, and Zare one-valued functions

S)l x.,y, and z. There is then but one direction in which P can move when

^passing a given point, and the system is a non-intersecting system of lines. But

[if this "is not the case, as for example when one of the equations giving the ratio

of the differentials is of higher degree, the lines may form an intersecting sys-

tem, and there would be a theory of singular solutions, into which we do not

Jiere enter.
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tion
"

like (3), which contains both constants. An integral

represents a surface which contains a singly infinite system of

lines representing particular solutions selected from the doubly
infinite system. Thus equation (2) above gives a surface on

-which lie all those lines for which a has a given value, while b

may have any value whatever
; in other words, a surface which

passes through an infinite number of the particular solution

lines.

The integral of the system which corresponds to the con-

stant b might be found by eliminating a between equations (2)

and (3). It might also be derived directly from equation (1) ;

thus we may write

dx _dy _dz _ dy+ dz _du
x

'' '

z
~~

y y
' + z u 9

in which a new variable u = y -\- z is introduced. The rela-

tion between dx and du now contains but two variables, and

its integral,

y+ z = bx, (4)

is the required integral of the system ;
and this, together with

the integral (2), presents the solution of equations (1) in its

standard form. The form of the two integrals shows that in

this case the doubly infinite system of lines consists of hyper-

bolas, namely, the sections of the system of hyperbolic cylinders

represented by (2) made by the system of planes represented

by (4).

A system of equations of which the members possess a cer-

tain symmetry may sometimes be solved in the following

manner. Since

dx _ dy _dz _ \dx -f- jxdy+ vdz_
3T~~ Y~~~Z~~ XX+pY+vZ'

if we take multipliers A, //, v such that

XX+ MY+vZ= o,

we shall have hdx+ pdy+ vdz = o.

If the expression in the first member is an exact differential,
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direct integration gives an integral of the given system. For

example, let the given equations be

dx dy dz

mz ny nx Iz ly mx '

/, m and n form such a set of multipliers, and so also do x,y
and z. Hence we have

Idx+ mdy+ ndz = o,

and also xdx + y dy -f- z dz = o.

Each of these is ar\ sxact equation, and their integrals

Ix -f- my -\- nz a

and *+/+**=
constitute the complete solution. The doubly infinite system

of lines consists in this case of circles which have a common

axis, namely, the line passing through the origin and whose

direction cosines are proportional to /, m y
and n.

~ ,
dx dy dz

Prob. 52. Solve the equations -5 , ,
= =

,
and

x y z 2xy 2xz

interpret the result geometrically. (Ans. y=az, x*-\-y* -\-z'
i

=bz.)

_ _
,

dx dy dz .

Prob. 53. Solve - = f =
.

y + z z -\- x x -\-y

(Ans. tf(x +y + z)=--= -A-.)

_ , ~ . dx dy dz
Prob. 54. Solve r, r = . r =

7 rr .D^
(b c)yz \c a)zx (a b)xy

(Ans. x' +/ + z* = A, ax* -f bf + cz* = .)

Art. 13. Equations of the Second Order.

A relation between two variables and the successive deriva-

tives of one of them with respect to the other as independent

variable is called a differential equation of the order indicated

by the highest derivative that occurs. For example,

is an equation of the second order, in which x is the independent
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variable. Denoting as heretofore the first derivative by/, this

equation may be written

(I+ *
,)i; + */+w* =

' (I>

and this, in connection with

which defines /, forms a pair of equations of the first order,

connecting the variables x, y, and /. Thus any equation of the

second order is equivalent to a pair of simultaneous equations

of the first order.

When, as in this example, the given equation does not con-

tain y explicitly, the first of the pair of equations involves only
the two variables x and/ ;

and it is further to be noticed that,

when the derivatives occur only in the first degree, it is a linear

equation for/. Integrating equation (i) as such, we find

p = ->*
\

v{1\^ (3>

and then using this value of/ in equation (2), its integral is

y = c,-mx + c
x log [x + y(i + x')l (4)

in which, as in every case of two simultaneous equations of the

first order, we have introduced two constants of integration.

An equation of the first order is readily obtained also

when the independent variable is not explicitly contained in

the equation. The general equation of rectilinear motion in

d*s
dynamics affords an illustration. This equation is =/(j),

where s denotes the distance measured from a fixed center of

dv
force upon the line of motion. It may be written = f[s), in

at

connection with = v, which defines the velocity. Eliminat-
dt

ing dt from these equations, we have vdv=f(s)ds, whose

integral is -JV = / f(s)ds -f- c, the "equation of energy" for

the unit mass. The substitution of the value found for v in the
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second equation gives an equation from which t is found in

terms of s by direct integration.

The result of the first integration, such as equation (3) above,

is called a "first integral" of the given equation of the second

order
;

it contains one constant of integration, and its complete

integral, which contains a second constant, is also the " com-

plete integral
"

of the given equation.

A differential equation of the second order is
" exact

"
when,

all its terms being transposed to the first member, that member
is the derivative with respect to x of an expression of the first

order, that is, a function of x, y and p. It is obvious that the

terms containing the second derivative, in such an exact differ-

ential, arise solely from the differentiation of the terms con-

taining/ in the function of x, y and/. For example, let it be

required to ascertain whether

<>-4+'=
is an exact equation. The terms in question are (1 x*) ,

ax

which can arise only from the differentiation of (1 x2

)p.

Now subtract from the given expression the complete deriva-

tive of (1 x*)p, which is

(i-x*)^--2xdy '

(I X)
dx>

2
*dx>

the remainder is x-f- -\- y, which is an exact derivative, namely,ax

that of xy. Hence the given expression is an exact differ-

ential, and

{i-*^ + *y = c
l (6)

is the first integral of the given equation. Solving this linear

equation for y, we find the complete integral

y = ClX + C^(l -X^). (7)

Prob.55. Solve(i-^)g-^|
= 2.

(Ans. y = (sin
-1

x)* -f- c
x
sin"

1 x -f- cv )
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Prob. 56. Solve g = &.

(aus.
y = \ +^3

.)

Prob. 57. Solve -~ = a
2* a

j.

(Ans. at
2* Py = A sin bx -{- B cos Ar.)

Prob. 58. Solvey?+ (g)"
=1. (Ans. / = *2 + ** + <V>

Art. 14. The Two First Integrals.

We have seen in the preceding article that the complete

integral of an equation of the second order is a relation be-

tween x, y and two constants c
x
and c

%
. Conversely, any rela-

tion between x, y and two arbitrary constants may be regarded
as a primitive, from which a differential equation free from both

arbitrary constants can be obtained. The process consists in

first obtaining, as in Art. 3, a differential equation of the first

order independent of one of the constants, say c^ ,
that is, a rela-

tion between x, y,p and c
x ,
and then in like manner eliminating

c
t
from the derivative of this equation. The result is the equa-

tion of the second order or relation between x
f y, p and q {q

denoting the second derivative), of which the original equation

is the complete primitive, the equation of the first order being
the first integral in which c

t
is the constant of integration. It

is obvious that we can, in like manner, obtain from the primi-

tive a relation between x, y, p and c
q ,

which will also be a first

integral of the differential equation. Thus, to a given form of

the primitive or complete integral there corresponds two first

integrals.

Geometrically the complete integral represents a doubly
infinite system of curves, obtained by varying the values of c

t

and of 3 independently. If we regard c
x
as fixed and <r3 as

arbitrary, we select from that system a certain singly infinite

system ;
the first integral containing c

x
is the differential equa-

tion of this system, which, as explained in Art. 2, is a relation

between the coordinates of a moving point and the direction

of its motion common to all the curves of the system. But



334 DIFFERENTIAL EQUATIONS. [Chap. VII.

the equation of the second order expresses a property involv-

ing curvature as well as direction of path, and this property

being independent of c
x
is common to all the systems corre-

sponding to different values of cv that is, to the entire doubly
infinite system. A moving point, satisfying this equation,

may have any position and move in any direction, provided its

path has the proper curvature as determined by the value of q

derived from the equation, when the selected values of x> y
and/ have been substituted therein.*

For example, equation (7) of the preceding article repre-

sents an ellipse having its center at the origin and touching

the lines x = 1, as in the diagram ;
c

x
is the ordinate of the

point of contact with x = 1, and c
2
that of the point in which

the ellipse cuts the axis of y. If we regard c
y
as fixed and <r

2

as arbitrary, the equation represents the system of ellipses

touching the two lines at fixed points, and equation (6) is the

differential equation of this system. In

like manner, if c^ is fixed and c
1 arbitrary,

equation (7) represents a system of ellipses

cutting the axis of y in fixed points

and touching the lines x= 1. The

corresponding differential equation will be

found to be

(y- Xp)V{l-X*)=C,.

Finally, the equation of the second order, independent of c
x

and
2 [(5) of the preceding article] is the equation of the

doubly infinite system of conies f with center at the origin,

and touching the fixed lines x = 1.

* If the equation is of the second or higher degree in q, the condition for

equal roots is a relation between x, y and/, which may be found to satisfy the

given equation. If it does, it represents a system of singular solutions; each

of the curves of this system, at each of its points, not only touches but osculates

with a particular integral curve. It is to be remembered that a singular solu-

tion of a first integral is not generally a solution of the given differential equa-

tion; for it represents a curve which simply touches but does not osculate a set

of curves belonging to the doubly infinite system.

f Including hyperbolas corresponding to imaginary values of c%.
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But, starting from the differential equation of second order,

we may find other first integrals than those above which corre-

spond to c
1
and c^. For instance, if equation (5) be multiplied

by/, it becomes

which is also an exact equation, giving the first integral

(1 -*v+/ =
',*.

in which c
s
is a new constant of integration.

Whenever two first integrals have thus been found inde-

pendently, the elimination of p between them gives the com-

plete integral without further integration.* Thus the result

of eliminating / between this last equation and the first inte-

gral containing c
x [equation (6), Art. 13] is

/ 2c
xxy + f,V = c? c*t

which is therefore another form of the complete integral. It

is obvious from the first integral above that c
2

is the maximum
value of y, so that it is the differential equation of the system
of ellipse inscribed in the rectangle drawn in the diagram. A
comparison of the two forms of the complete integral shows

that the relation between the constants is c
t

% = c* -\- c*.

If a first integral be solved for the constant, that is, put in

the form <J>(x, y, p) = c, the constant will disappear on differ-

entiation, and the result will be the given equation of second

order multiplied, in general, by an integrating factor. We can

thus find any number of integrating factors of an equation

already solved, and these may suggest the integrating factors

of more general equations, as illustrated in Prob. 59 below.

* The principle of this method has already been applied in Art. 10 to the

solution of certain equations of the first order; the process consisted of forming
the equation of the second order of which the given equation is a first integral

{but with a particular value of the constant), then finding another first integral

and deriving the complete integral by elimination of p.



336 DIFFERENTIAL EQUATIONS. [CHAP. VII..

ji

Prob. 59. Solve the equation 5 + <?y = o in the form

y = A cos ax -f- B sin ax;

and show that the corresponding integrating factors are also inte-

grating factors of the equation

where X is any function of x; and thence derive the integral of this

equation.

(Ans. ay = sin ax I cos ax . Xdx cos ax I sin ax . Xdx).

Prob. 60. Find the rectangular and also the polar differential

equation of all circles passing through the origin.

(An,(^ +/)g= 2

[
I + (|y](,|-4 and ,+ -)

Art. 15. Linear Equations.

A linear differential equation of any order is an equation of

the first degree with respect to the dependent variable y and
each of its derivatives, that is, an equation of the form

where the coefficients P
,

. . . Pn and the second memberX are

functions of the independent variable only.

The solution of a linear equation is always supposed to be
in the form y z=.f(x) ;

and if yl
is a function which satisfies the

equation, it is customary to speak of the function yl%
rather than

of the equation y y K ,
as an "integral" of the linear equa-

tion. The general solution of the linear equation of the first

order has been given in Art. 6. For orders higher than the

first the general expression for the integrals cannot be effected

by means of the ordinary functional symbols and the integral

sign, as was done for the first order in Art. 6.

The solution of equation (1) depends upon that of

dnv dn
~^v
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The complete integral of this equation will contain n arbi-

trary constants, and the mode in which these enter the expres-

sion for y is readily inferred from the form of the equation.

For let yx
be an integral, and c

x
an arbitrary constant

;
the re-

sult of putting y = cj x
in equation (2) is c

x
times the result of

putting y =y x \
that is, it is zero

;
therefore c

ly1
is an integral.

So too, if y2
is an integral, j/a

is an integral ;
and obviously

also c
xyx + j/3

is an integral. Thus, if n distinct integrals yx ,

y%i . . ,yn can be found,

y = c
xyx +w% + . . . + cnyn (3)

will satisfy the equation, and, containing, as it does, the proper
number of constants, will be the complete integral.

Consider now equation (1); let Fbe a particular integral of

it, and denote by u the second member of equation (3), which

is the complete integral when X = o. If

y=Y+u (4)

be substituted in equation (1), the result will be the sum of the

results of putting y = Fand of putting y = u
;
the first of

these results will be X, because Fis an integral of equation (1),

and the second will be zero because u is an integral of equa-

tion (2). Hence equation (4) expresses an integral of (1); and

since it contains the n arbitrary constants of equation (3), it

is the complete integral of equation (1). With reference to

this equation Y is called " the particular integral," and u is

called "the complementary function." The particular integral

contains no arbitrary constant, and any two particular integrals

may differ by any multiple of a term belonging to the comple-

mentary function.

If one term of the complementary function of a linear

equation of the second order be known, the complete solution

can be found. For let y x
be the known term

; then, if y = yx
v

be substituted in the first member, the coefficient of v in the

result will be the same as if v were a constant : it will there-

fore be zero, and v being absent, the result will be a linear equa-
tion of the first order for v', the first derivative c*f v. Under
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the same circumstances the order of any linear equation can

in like manner be reduced by unity.

A very simple relation exists between the coefficients of an

exact linear equation. Taking, for example, the equation of

the second order, and indicating derivatives by accents, if

P.S+PJ+Pty = x
is exact, the first term of the integral will be P y' Subtracting
the derivative of this from the first member, the remainder is

(Pt
P ')y' + P

ty. The second term of the integral must

therefore be {Px
P ')y ; subtracting the derivative of this ex-

pression, the remainder, (Pt P/ -\- P9")y, must vanish. Hence

P% P
t

'

-f- P" = o is the criterion for the exactness of the

given equation. A similar result obviously extends to equa-

tions of higher orders.

x d^y dy
Prob. 61. Solve x (3 + x)-j- -f- 3V = o, noticing that e* is

an integral. (Ans. y cj? + c
2(x

z

-f- $x* -f 6x -\- 6.)

72 7

Prob. 62. Solve (*
a

x)-jr$
+ 2(2* -f- i)~- -f- 2y = o.

(Ans. (x i)
5

y = c,(x* 6x* -f 2X $ 4X
3

log x) -f- cjc*.)

Prob. 63. Solve-^3 + cos
#-^-2

2 sin
B-^ y cos = sin 26.

(Ans. y = e~ sin 6

fe
sin

\cfi + c%)d0 + c%e
~ sin9 - Sm ~

\ \

Art. 16. Linear Equations with Constant
Coefficients.

The linear equation with constant coefficients and second

member zero may be written in the form

AJPy + AJXr
x

y + . . . + A ny = o, (1)

in which D stands for the operator -3-, D* for -r%, etc., so that

Dn indicates that the operator is to be applied n times. Then,

since Demx = memx ,
D2

e
mx = wV", etc., it is evident that if
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y e
mx be substituted in equation (i), the result after rejecting

the factor e
mx will be

A w" + A.m"-
1 + . . . + A n = o. (2)

Hence, if m satisfies equation (2), e
mx

is an integral of equation

(1) ;
and if w

3 , . . . mn are n distinct roots of equation (2),

the complete integral of equation (1) will be

y 3= c
x
W + cj** + . . . + cne

mn
*. (3)

For example, if the given equation is

(Py dy

the equation to determine m is

m? m 2 = o,

of which the roots are m
x
= 2, m9

= 1
; therefore the in-

tegral is

y = c^
3JC

-J- a*-*.

The general equation (1) may be written in the symbolic
form f(D) .y = o, in which f denotes a rational integral func-

tion. Then equation (2) is f{m) = o, and, just as this last

equation is equivalent to

(m m^(m mt)
. . . {m mn)

= o, (4)

so the symbolic equation f{D) .y = o may be written

(D m
t)(D m,) ...(>- mn)y = o. (5)

This form of the equation shows that it is satisfied by each of

the quantities which satisfy the separate equations

(D m^)y = 0, (B m^)y = o . . . (D mn)y = o
; (6)

that is to say, by the separate terms of the complete integral.

If two of the roots of equation (2) are equal, say to m
lt
two

of the equations (6) become identical, and to obtain the full

number of integrals we must find two terms corresponding to

the equation
(D - m xYy = o

; (7)

in other words, the complete integral of this equation of which

y x
:= e

m
i
x

is known, to be one integral. For this purpose we
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put, as explained in the preceding article, y =yt
v. By differen-

tiation, Dy = Dem ^xv = em^x{m x
v -f- Dv) ;

therefore

(D tn
x)e**v = em*Dv. (8)

In like manner we find

{D m^fe
m^v = em ^xDl

v. (9)

Thus equation (7) is transformed to D'v = o, of which the

complete integral is v = c,x -\-c2 ;
hence that of equation (7) is

y = e^x
{c xx-\- c%). (10)

These are therefore the two terms corresponding to the squared

factor (D m
xY in f(D)y = o.

It is evident that, in a similar manner, the three terms

corresponding to a case of three equal roots can be shown to

be ^(c^x
1 + cjc -j- c

s) f
and so on.

The pair of terms corresponding to a pair of imaginary-

roots, say **, = a-\- ifi, mt
~ a ifi, take the imaginary form

Cigi*+iP)x _j_ c^-mx t**(c/t*+ cte-#*).

Separating the real and imaginary parts of e#x and *-**, and

changing the constants, the expression becomes

eax(A cos fix-\-B sin fix), (11)

For a multiple pair of imaginary roots the constants A and

B must be replaced by polynomials as above shown in the case

of real roots.

When the second member of the equation with constant

coefficients is a function of X, the particular integral can also

be made to depend upon the solution of linear equations of

the first order. In accordance with the symbolic notation

introduced above, the solution of the equation

dy
-j^

ay X, or (D - a)y = X (12)

is denoted by y = (D a)~*X, so that, solving equation (12),

we have

^X=e'fe-**Xdx (13)

as the value of the inverse symbol whose meaning is "that
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function of x which is converted to X by the direct operation

expressed by the symbol D a" Taking the most convenient

special value of the indefinite integral in equation (13), it gives

the particular integral of equation (12). In like manner, the par-

ticular integral of f{D)y = X is denoted by the inverse symbol

TfpfX. Now, with the notation employed above, the symbolic

fraction may be decomposed into partial fractions with constant

numerators thus :

1 N N N
TTF^X = n

' X+ n
a X+ . . . + -ft^X* (14)

f(D) D m
l

' D m^
' ' D mn

x ^'

in which each term is to be evaluated by equation (13), and

may be regarded (by virtue of the constant involved in the

indefinite integral) as containing one term of the complement-

ary function. For example, the complete solution of the

equation

3---*
is thus found to be

y = \#*fe-**Xdx
- \e~*fXdx.

When X is a power of x the particular integral may be

found as follows, more expeditiously than by the evaluation of

the integrals in the general solution. For example, if X x*

the particular integral in this example may be evaluated by

development of the inverse symbol, thus :

_ I _ a__I I
a

y ~D*-D-2X ~
2 i+KZJ-JT)

* The validity of this equation depends upon the fact that the operations

expressed in the second member of

f{D) = (D - mi)(D -m,) + ...+(D-mM)

are commutative, hence the process of verification is the same as if the equation

were an algebraic identity. This general solution was published by Boole in

the Cambridge Math. Journal, First Series, vol. II, p. 114. It had, however,

been previously published by Lobatto, Theorie des Characteristiques, Amster-

dam, 1837.
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The form of the operand shows that, in this case, it is only

necessary to carry the development as far as the term contain-

ing D\
For other symbolic methods applicable to special forms of

X we must refer to the standard treatises on this subject.

d 3

y dy
Prob.64. Solve

4^3 -3^+J=o.
(Ans. y = e*

x
(Ax + JB) + ce~x.)

Prob. 65. Show that 7n^e
ax = -^-\**D AD) /(a)

and that y^ sin (ax + ft)
=
jA^.

sin (ax + ft).

Prob. 66. Solve (Z>
2 + 1 )y

= e* + sin 2x -f- sin x. (Compare
Prob. 59, Art. 14.)

(Ans. y = A sin x + B cos x -f- i<^ \ sin 2.3; \x cos #.)

Art. 17. Homogeneous Linear Equations.

The linear differential equation

A
-
X
"S- + A^"& +---+^y = o, (1)

in which A , A x% etc., are constants, is called the "homogene-
ous linear equation." It bears the same relation to xm that

the equation with constant coefficients does to emx . Thus, if

y=zx
m be substituted in this equation, the factor xm will divide

out from the result, giving an equation for determining ;;/,

and the n roots of this equation will in general determine the

n terms of the complete integral. For example, if in the

equation
ud*y . dy

x*--4 + 2X-f- 2y = o
ax dx

we put y = xm
y
the result is m(m 1) -f- 2m 2 = 0, or

(m i)(m -f- 2)
= o.

The roots of this equation are m
x
= I and /#3

= 2.

Hence y = c
xx+V a

is the complete integral.

Equation (1) might in fact have been reduced to the form

with constant coefficients by changing the independent vari-
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able to 0, where x = ee
,
or 6 = log x. We may therefore at

once infer from the results established in the preceding article

that the terms corresponding to a pair of equal roots are of the

form

(cx + c
% log x)x

m
y (2)

and also that the terms corresponding to a pair of imaginary

roots, a i/3, are

xa
[A cos (J3 log x) -\- B sin [ft log x)\ (3)

The analogy between the two classes of linear equations

considered in this and the preceding article is more clearly

seen when a single symbol = xD is used for the operation of

taking the derivative and then multiplying by x, so that

xm = mxm
. It is to be noticed that the operation x*D2

is not

the same as #a
or xDxD, because the operations of taking the

derivative and multiplying by a variable are not " commu-

tative," that is, their order is not indifferent. We have, on the

contrary, x7D* = $(# 1) ;
then the equation given above,

which is

(x
2

D*-\-2x>- 2)7 = 0,

becomes

[${& 1) + 2# 2]/ = o, or ($ - i)(S + 2)y = o,

the function of $ produced being the same as the function of

m which is equated to o in finding the values of m.

A linear equation of which the first member is homoge-
neous and the second member a function of x may be reduced

to the form

A*)-y =& (4)

The particular integral may, as in the preceding article (see

eq. (14)), be separated into parts each of which depends upon
the solution of a linear equation of the first order. Thus,

solving the equation

dyx
dx ay = X, or ($

-
a)y = X, (5)

we find W^~'
X = xafx~a~iXdx '

(
6>

The more expeditious method which may be employed
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when A* is a power of x is illustrated in the following example :

d v dv
Given x* -4 2-7- = ^2

. The first member becomes homo-
dx dx

geneous when multiplied by x, and the reduced equation is

($
_ 3^ = *.

The roots of f{&) =0 are 3 and the double root zero, hence

the complementary function is c
x
x%

-f- c^ -f- c
% log *:, Since in

general J\$)x
r
=f(r)x

r
,
we infer that in operating upon ^8 we

may put # = 3. This gives for the particular integral
I I

.3
I I

S - 3 ^ 9 # - 3*
'

but fails with respect to the factor # 3.* We therefore

now fall back upon equation (6), which gives

_ x%
=z x3

jx-'dx
= x3

log x.

The complete integral therefore is

y = ti*
3 + c,+ c

*
log * + ix

9
log *

d"*y dy
Prob. 67. Solve 2^2

^~4 + Zx ~j
3J ?-

(Ans. y c
x
x + ^" 8 + +*'.)

Prob. 68. Solve (*
2
Z>

3 + 3*Z>
2 + JD)y = -.

(Ans. ^ = c
x + *a log x + <r

3 (log .x)

2 + J(log *)
3

.)

Art. 18. Solutions in Infinite Series.

We proceed in this article to illustrate the method by
which the integrals of a linear equation whose coefficients are

algebraic functions of x may be developed in series whose

terms are powers of x. For this purpose let us take the

equation

* The failure occurs because x'A is a term of the complementary function

having an indeterminate coefficient; accordingly the new term is of the same

form as the second term necessary when 3 is a double root, but of course with

a determinate coefficient.
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which is known as " Bessel's Equation," and serves to define

the "Besselian Functions."

If in the first member of this equation we substitute for_^

the single term Axm the result is

A{n? - ri
l

)x
m + Axm+\ (2)

the first term coming from the homogeneous terms of the

equation and the second from the term x*y which is of higher

degree. If this last term did not exist the equation would be

satisfied by the assumed value of/, if w were determined so as

to make the first term vanish, that is, in this case, by Axn or

Bx~ n
. Now these are the first terms of two series each of

which satisfies the equation. For, if we add to the value of y
a term containing xm+2 ,

thus y = A xm -\- A x
xmJr2

,
the new term

will give rise, in the result of substitution, to terms containing

^m+2 ancj xm+4
respectively, and it will be possible so to take

A
l
that the entire coefficient of xm+2 shall vanish. In like

manner the proper determination of a third term makes the

coefficient of xM+4 in the result of substitution vanish, and so

on. We therefore at once assume

y = 2 A,xm+ar = A xm + A
x
xm+2+ A,x

m+4+ . . . , (3)

in which r has all integral values from o to 00 . Substituting

in equation (1)

2[{ (in + 2r)
3

}A rxm+2r+ A rxm+2 ^r+I)

]
= o. (4)

The coefficient of each power of x in this equation must sep-

arately vanish
; hence, taking the coefficient of xm+2r,

we have

[(m + 2ry-n*]Ar+Ar_t
= o. (5)

When r = o, this reduces to m* n2 = o, which determines

the values of m, and for other values of r it gives

Ar = ~
(m + 2r+ n){m + 2r - n)

Ar' x ' ^
the relation between any two successive coefficients.

For the first value of m, namely n, this relation becomes

A
l

A
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whence, determining the successive coefficients in equation (3),.

the first integral of the equation is

Ay, = AX[i
-
j^pj

~, +
( +l)(w + 3) ^5771 -...} (7)

In like manner, the other integral is found to be

Bj, = Bs-\i +^-^ +
{n
_ ,)(_ 2)^,+ -], (8)

and the complete integral is y = A
ty l -f- Bjv

*

This example illustrates a special case which may arise in

this form of solution. If n is a positive integer, the second

series will contain infinite coefficients. For example, if n = 2,,

the third coefficient, or B is infinite, unless we take B = o, in

which case B2
is indeterminate and we have a repetition of the

solution y x
. This will always occur when the same powers of

x occur in the two series, including, of course, the case in which

m has equal roots. For the mode of obtaining a new integral

in such cases the complete treatises must be referred to.f

It will be noticed that the simplicity of the relation between

consecutive coefficients in this example is due to the fact that

equation (1) contained but two groups of terms producing

different powers of x, when Axm is substituted for y as in ex-

pression (2). The group containing the second derivative

necessarily gives rise to a coefficient of the second degree in

m, and from it we obtained two values of m. Moreover, be-

cause the other group was of a degree higher by two units, the

assumed series was an ascending one, proceeding by powers
of x\

* The Besselian function of the nth order usually denoted byJn is the value

of y\ above, divided by inn\ if n is a positive integer, or generally by inT{n-\- 1).

For a complete discussion of these functions see Lommel's Studien iiber die

Bessel'schen Functionen, Leipzig, 1868; Todhunter's Treatise on Laplace's,

Lame's and Bessel's Functions, London, 1875, etc.

f A solution of the kind referred to contains as one term the product of the

regular solution and log x, and is sometimes called a "logarithmic solution."

See also American Journal of Mathematics, Vol. XI, p. 37. In the case of

Bessel's equation, the logarithmic solution is the "Besselian Function of the

oecond kind."



Art. 18.] solutions in infinite series. 347

In the following example,

d*y dy y

there are also two such groups of terms, and their difference

of degree shows that the series must ascend by simple powers.

We assume therefore at once

y = 2 A rx
m^. (io)

The result of substitution is

%[{(m+r)(m+r-i)-2}A rxm+r
-2+ a(m+r)A rxm+r

- I

~\= o. (u>

Equating to zero the coefficient of xm+r~2
,

{m-\-r-\- i)(m + r 2)A r + a{m + r i)A r _ 1
= o, (12)

which, when r = o, gives

(m+ \){m
- 2)A = o, (13)

and when r > o,

m-\-r 1

Ar - "
\m+r+i){m+r- 2)

Ar
'T (I4)

The roots of equation (13) are m = 2 and m = 1; taking

m = 2, the relation (14) becomes

whence the first integral is

A,yt
=
As[i

-
\ax

+^V -~
6 '*'+-- ] (V|)

Taking the second value m = i
f equation (14) gives

r 2

whence Bx
= -2?

,
and i?

3 o *; therefore the second inte-

gral is the finite expression

^,=^-[i-^>4i-f]. (16)

*B3 would take the indeterminate form, and if we suppose it to have a finite

value, the rest of the series is equivalent to B 3yi, reproducing the first integral.
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When the coefficient of the term of highest degree in the

result of substitution, such as equation (u), contains m, it is

possible to obtain a solution in descending powers of x. In

this case, m occurring only in the first degree, but one such

solution can be found
;

it would be identical with the finite

integral (16). In the general case there will be two such solu-

tions, and they will be convergent for values of x greater than

unity, while the ascending series will converge for values less

than unity.*

When the second member of the equation is a power of x,

the particular integral can be determined in the form of a series

in a similar manner. For example, suppose the second mem-
ber of equation (9) to have been x*. Then, making the sub-

stitution as before, we have the same relation between consecu-

tive coefficients; but when r o, instead of equation (13) we

have
{m + i){m 2)A x

m-2 = x*

to determine the initial term of the series. This gives m = 2\

and A = % ; hence, putting m = f in equation (14), we find for

the particular integral f

y = J\ _ lllax+ 2''* 7 <*V - . . 1
7 L 9.3 9-H-3.5 -I

A linear equation remains linear for two important classes

of transformations ; first, when the independent variable is

changed to any function of x, and second, when for y we put

vf{x). As an example of the latter, let y = e~axv be substituted

in equation (9) above. After rejecting the factor e~
ax

> the

result is

(Pv dv 2V = 0.

Since this differs from the given equation only in the sign

*When there are two groups of terms, the integrals are expressible in terms

of Gauss's "
Hypergeometric Series."

f If the second member is a term of the complementary function (for ex-

ample, in this case, if it is any integral power of x), the particular integral will

take the logarithmic form referred to in the foot-note on p. 346.
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of a, we infer from equation (16) that it has the finite integral

v =
-|

. Hence the complete integral of equation (9) can

be written in the form

xy *= c
x{2 ax) + c7e~

ax
(2 -f- ax).

d*y
Prob. 69. Integrate in series the equation

-~
-j- xy = o.

(Ans.
J=^(x- 3y+^_ . .

)+Il{x-ff
>

+'~j*x>-
.
,
.).)

Prob. 70. Integrate in series x*.
t + x l-~

-f- (x 2)y = o.

Prob. 71. Derive for the equation of Prob. 70 the integral

j3
= e"

x
{x~

l + 1 + ix), and find its relation to those found above.

Art. 19. Systems of Differential Equations.

It is shown in Art. 12 that a determinate system of n differ-

ential equations of the first order connecting n + 1 variables

has for its complete solution as many integral equations con-

necting the variables and also involving n constants of inte-

gration. The result of eliminating n 1 variables would be a

single relation between the remaining two variables containing*

in general the n constants. But the elimination may also be

effected in the differential system, the result being in general

an equation of the /zth order of which the equation just men-

tioned is the complete integral. For example, if there were

two equations of the first order connecting the variables x and

y with the independent variable /, by differentiating each we
should nave four equations from which to eliminate one vari-

able, sayjj/, and its two derivatives* with respect to /, leaving

a single equation of the second order between x and t.

It is easy to see that the same conclusions hold if some of

the given equations are of higher order, except that the order

of the result will be correspondingly higher, its index being in

* In general, there would be 2
equations from which to eliminate n r

variables and n derivatives of each, that is, ( i)( -f- 1) = *
1 quantities

leaving a single equation of the th order.
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general the sum of the indices of the orders of the given equa-

tions. The method is particularly applicable to linear equa-

tions with constant coefficients, since we have a general method

of solution for the final result. Using the symbolic notation,

the differentiations are performed simply by multiplying by
the symbol D, and therefore the whole elimination is of exactly

the same form as if the equations were algebraic. For ex-

ample, the system

2t,

dx
, dy

*dt^ dt
3* = o,

2J9y+ (4Z>-3)* = o;

2t

O

V-

dy dx

~df"~~dt

when written symbolically, is

(2D' 4)y Dx = 2/,

whence, eliminating xy

2D2 -4 -D
2D 4^-3

which reduces to

(D-i)\2D-\-3)y = 2

Integrating,

the particular integral being found by symbolic development,
as explained at the end of Art. 16.

The value of x found in like manner is

x = (A' + B'ty+ C'e~* - f
The complementary function, depending solely upon the deter-

minant of the first members,* is necessarily of the same form

as that for y, but involves a new set of constants. The re-

lations betv/een the constants is found by substituting the

values of x and y in one of the given equations, and equating
to zero in the resulting identity the coefficients of the several

terms of the complementary function. In the present ex-

ample we should thus find the value of x, in terms of A, B>

and Cy
to be

x = (6B - 2A - 2Bty \Ce-* - -J.

* The index of the degree in D of this determinant is that of the order of

the final equation ;
it is not necessarily the sum of the indices of the orders cf

the given equations, but cannot exceed this sum.
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In general, the solution of a system of differential equations

depends upon our ability to combine them in such a way as

to form exact equations. For example, from the dynamical

system

W~ X
' dt*-

Y' dt'-^' w
where X, Y, Z are functions of x, y, and z, but not of /,

we form the equation

dx ,dx . dy Az . dz ,dz VJ . -., ,

, dr + -4-d -+ d Xdx+ Ydy 4- Zdz.
dt dt

'

dt dt
'

dt dt
' '

The first member is an exact differential, and we know that for

a conservative field of force the second member is also exact,

that is, it is the differential of a function U of x, y, and z.

The integral

;[()"+"+>*+* M
is that first integral of the system (1) which is known as the

equation of energy for the unit mass.

Just as in Art. 13 an equation of the second order was re-

garded as equivalent to two equations of the first order, so the

system (i)in connection with the equation defining the resolved

velocities forms a system of six equations of the first order, of

which system equation (2) is an "
integral

"
in the sense ex-

plained in Art. 12.

^ , r, ,
dx dy .

Prob. 72. Solve the equations = = at as a system iin-
my mx J

ear in /. (Ans. x = A cosmt+B sin mt, y =A s'mmtB cosmt.)

Prob. 73. Solve the system
-

1- ny = e
*

f
JL

_j_ z =

(Ans. y = Aenx+ Be'"* +-, z = - nAenx+ nBe " nx - f .)n n 1
'

Prob. 74. Find for the system -^ = x<p(x,y), -^~
=

y<P(x,y)

a first integral independent of the function 0.

/a dy dx _ |
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Prob. 75. The approximate equations for the horizontal motion,

of a pendulum, when the earth's rotation is taken into account, are

d?x dy , gx d*y . dx gy

show that both x andy are of the form

A cos n
x
t -\- B sin n

x
t + C cos n

%
t + D sin nj.

Art. 20. First Order and Degree with Three
Variables.

The equation of the first order and degree between three

variables x, y and z may be written

Pdx+ Qdy + Rdz = o, (1)

where P, Q and R are functions of x, y and z. When this

equation is exact, P, Q and R are the partial derivatives of

some function u, of x, y and z
;
and we derive, as in Art. 4,

dP= dQ sG^atf d = &P M
dy d*' dz

~

dy' dx dz ^
for the conditions of exactness. In the case of two variables,

when the equation is not exact integrating factors always exist;,

but in this case, there is not always a factor u such that piPy

juQ and /jR (put in place of P, Q, and R) will satisfy all three

of the conditions (2). It is easily shown that for this purpose
the relation

p (dQ dR\, n (dR 8A, (dP dQ\ n
(3)'

must exist between the given values of P, Q, and R. This is>

therefore the " condition of integrability
"
of equation (1).*

When this condition is fulfilled equation (1) may be inte-

grated by first supposing one variable, say 2, to be constant.

Thus, integrating Pdx -j- Qdy = o, and supposing the constant

of integration C to be a function of z, we obtain the integral, so

*When there are more than three variables such a condition of integra-

bility exists for each group of three variables, but these conditions are not all

independent. Thus with four variables there are but three independent con-

ditions.
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far as it depends upon x and y. Finally, by comparing the

total differential of this result with the given equation we de-

termine dC in terms of z and ds, and thence by integration the

value of C.

It may be noticed that when certain terms of an exact

equation forms an exact differential, the remaining terms must

also be exact. It follows that if one of the variables, say z

can be completely separated from the other two (so that in

equation (i) R becomes a function of z only and Pand Q func-

tions of x and y, but not of z) the terms Pdx -f- Qdy must be

thus rendered exact if the equation is integrable.* For example,

zydx zxdy y*dz = o.

is an integrable equation. Accordingly, dividing by y*z, which

we notice separates the variable z from x and y, puts it in the

exact form
ydx xdy dz

i
~ = o,

y z

of which the integral is x =y log cz.

Regarding x, y and z as coordinates of a moving point,

an integrable equation restricts the point to motion upon one

of the surfaces belonging to the system of surfaces represented

by the integral ;
in other words, the point (x, y, z) moves in an

arbitrary curve drawn on such a surface. Let us now consider

in what way equation (i) restricts the motion of a point when

it is not integrable. The direction cosines of a moving point

are proportional to dx, dy y
and dz\ hence, denoting them by

/, m and n, the direction of motion of the point satisfying

equation (i) must satisfy the condition

P/+ Qm + Rn = o. (4)

It is convenient to consider in this connection an auxiliary

system of lines represented, as explained in Art. 12, by the

simultaneous equations
dx _dy _dz
~p~~Q~~R' (5)

* In fact for this case the condition (3) reduces to its last term, which ex-

presses the exactness of Pdx -}- Qdy.
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The direction cosines of a point moving in one of the lines

-of this system are proportional to P, Q and R. Hence, de-

noting them by A, ju, v, equation (4) gives

XI -)- p-in -f- vn = o (6)

for the relation between the directions of two moving points,

whose paths intersect, subject respectively to equation (1) and

to equations (5). The paths in question therefore intersect at

right angles; therefore equation (1) simply restricts a point to

move in a path which cuts orthogonally the lines of the auxili-

ary system.

Now, if there be a system of surfaces which cut the auxiliary

lines orthogonally, the restriction just mentioned is completely

expressed by the requirement that the line shall lie on one of

these surfaces, the line being otherwise entirely arbitrary.

This is the case in which equation (1) is integrable.*

On the other hand, when the equation is not integrable, the

restriction can only be expressed by two equations involving

an arbitrary function. Thus if we assume in advance one such

relation, we know from Art. 12 that the given equation (1)

together with the first derivative of the assumed relation forms

a system admitting of solution in the form of two integrals*

Both of these integrals will involve the assumed function. For

any particular value of that function we have a system of lines

satisfying equation (1), and the arbitrary character of the func-

tion makes the solution sufficiently general to include all lines

which satisfy the equation/)-

Prob. 76. Show that the equation

(mz ny)dx + (nx lz)dy + (ly mx)dz = o

is integrable, and infer from the integral the character of the auxil-

*It follows that, with respect to the system of lines represented by equations

(5), equation (3) is the condition that the system shall admit of surfaces cutting

them orthogonally. The lines of force in any field of conservative forces form

such a system, the orthogonal surfaces being the equipotential surfaces.

f So too there is an arbitrary element about the path of a point when the

single equation to which it is subject is integrable, but this enters only into one

of the two equations necessary to define the path.
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iary lines. (Compare the illustrative example at the end of Art. 1 2.)

(Ans. nx Iz = C(ny mz).)

Prob. 77. Solve yz*dx z*dy e
xdz = o. (Ans. yz = e

x
(i-\-cz).)

Prob. 78. Find the equation which in connection with^ - f(x)
forms the solution of dz aydx -J- bdy.

Prob. 79. Show that a general solution of

ydx = (x z)(dy dz)

is given by the equations

y * = <?K*), jy
= (* *)0'(*).

(This is an example of
"
Monge's Solution.")

Art. 21. Partial Differential Equations of First

Order and Degree.

Let x denote an unknown function of the two independent

variables x and y, and let

dz dz

denote its partial derivatives : a relation between one or both

of these derivatives and the variables is called a "
partial dif-

ferential equation
"

of the first order! A Value of z in terms of

x and y which with its derivatives satisfies the equation, or a

relation between x, y and z which makes z implicitly such a

function, is a "
particular integral." The most general equation

of this kind is called the "
general integral."

If only one of the derivatives, say/, occurs, the equation

may be solved as an ordinary differential equation. For \iy is

considered as a constant, p becomes the ordinary derivative of

z with respect to x
; therefore, if in the complete integral of

the equation thus regarded we replace the constant of integra-

tion by an arbitrary function of y, we shall have a relation

which includes all particular integrals and has the greatest pos-

sible generality. It will be found that, in like manner, when

both p and q are present, the general integral involves an arbi-

trary function.

We proceed to give Lagrange's solution of the equation of
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the first order and degree, or " linear equation," which may be

written in the form

Pp+Qq = R, (I)

P, Q and R denoting functions of x, y and z. Let u = a, in

which u is a function of x, y and z, and a, a constant, be an

integral of equation (i). Taking derivatives with respect to x
and y respectively, we have

du . du 3*
,
du

^ +^ =
' &+&t =

'

and substitution of the values of / and q in equation (i) gives

the symmetrical relation

Consider now the system of simultaneous ordinary differ-

ential equations
dx __dy _dz
~P~Q~~R (3)

Let u = a be one of the integrals (see Art. 12) of this sys-

tem. Taking its total differential,

-du a du :

dx 4- -dy -\- dz = o ;

-dx
'

dy
J ~

dz

and since by equations (3) dx, dy and dz are proportional to P,

Q and R, we obtain by substitution

diP+ dy
Q + d^

R -'

which is identical with equation (2). It follows that every

integral of the system (3) satisfies equation (1), and conversely,

so that the general expression for the integrals of (3) will be

the general integral of equation (1).

Now let v = b be another integral of equations (3), so that

v is also a function which satisfies equation (2). As explained

in Art. 12, each of the equations u = a, v = b is the equation

of a surface passing through a singly infinite system of lines

belonging to the doubly infinite system represented by equa-

tions (3). What we require is the general expression for any
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surface passing through lines of the system (and intersecting

none of them). It is evident that f(u, v) =f(a, b) = C is such

an equation,* and accordingly/^, v), where / is an arbitrary

function, will be found to satisfy equation (2). Therefore, to

solve equation (1), we find two independent integrals u = a,

v = b of the auxiliary system (3), (sometimes called Lagrange's

equations,) and then put
u = <p(v), (4)

an equation which is evidently equally general with/(z^, v) = o.

Conversely, it may be shown that any equation of the form

(4), regarded as a primitive, gives rise to a definite partial

differential equation of Lagrange's linear form. For, taking

partial derivatives with respect to the independent variables

x and y, we have

-+-/>
= (.) [--+

-/
J,

and eliminating cf)

r

(v) from these equations, the term contain-

ing/^ vanishes, giving the result

(5)

which is of the form Pp -f- Qq = R.j-

* Each line of the system is characterized by special values of a and b which

we may call its coordinates, and the surface passes through those lines whose

coordinates are connected by the perfectly arbitrary relation J\a, b) = C.

f These values of P, Q and R are known as the "
Jacobians

"
of the pair

of functions u, v with respect to the pairs of variables y, z\ z, x ;
and x, y re-

spectively. Owing to their analogy to the derivatives of a single function they

are sometimes denoted thus :

du 9
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As an illustration, let the given partial differential equa-

tion be

(mz ny)p -\- (fix lz)q = ly mx, (6)

for which Lagrange's Equations are

dx dy dz
, = 1 (j\mz ny nx Iz ly mx' w J

These equations were solved at the end of Art. 12, the two

integrals there found being

Ix -f- my + nz = a and x* -\- y* -\- z* = fr. (8)

Hence in this case the system of "
Lagrangean lines" con-

sists of the entire system of circles having the straight line

-==- (q)

for axis. The general integral of equation (6) is then

Ix -\- my -f- nz = 0(V -\- y* -f-
2

), (io)

which represents any surface passing through the circles just

mentioned, that is, any surface of revolution of which (9) is the

axis.*

Lagrange's solution extends to the linear equation contain-

ing n independent variables. Thus the equation being

P^Lmp^L+ 4-p*L-r

the auxiliary equations are

dx
x dx^ _ dxn dz

- - = o is the condition that <p (a function of x, v and z) is expressible
d(x, y, Z)

identically as a function of u and v, that is to say, that <p = o shall be an in-

tegral of Pp -f- Qq R.

* When the equation Pdx -f- Qdy -f- Rdz = is integrable (as it is in the

above example; see Prob. 76, Art. 20), its integral, which may be put in the form

V= C, represents a singly infinite system of surfaces which the Lagrangean
lines cut orthogonally ; therefore, in this case, the general integral may be de-

fined as the general equation of the surfaces which cut orthogonally the system

V = C. Conversely, starting with a given system V'= C, u =f(v) is the gen-

eral equation of the orthogonal surfaces, if u a and v = b are integrals of

dx I = dy I dz -
.

/ dx 'I hv I dz
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and if u
t
= c1} ?/

2
= c . . . un s= cn are independent integrals,

the most general solution is

/( u . . . uu) = o,

where /is an arbitrary function.

Prob. 80. Solve xz-
|- yZ = Xy % (Ans. xy z* = /(-].]

Prob. 81. Solve (y -f- z)p -f- (z + x)q = x -\- y.

Prob. 82. Solve (x + y)(p
-

q)
= 5.

(Ans. (^+j) log^ x=f(x+y).)
Prob. 83. Solve ^(^ z)p -\-y(z x)q = z(x y).

(Ans. x -j- y -\- z = f(xyz).)

Art. 22. Complete and General Integrals.

We have seen in the preceding article that an equation be-

tween three variables containing an arbitrary function gives

rise to a partial differential equation of the linear form. It

follows that, when the equation is not linear in/ and q, the

general integral cannot be expressed by a single equation of

the form 0(?/, 7/)
= o; it will, however, still be found to depend

upon a single arbitrary function.

It therefore becomes necessary to consider an integral hav-

ing as much generality as can be given by the presence of arbi-

trary constants. Such an equation is called a "
complete in-

tegral
"

;
it contains two arbitrary constants {n arbitrary con-

stants in the general case of n independent variables), because

this is the number which can be eliminated from such an equa-

tion, considered as a primitive, and its two derived equations.

For example, if

(x- ay + (y-dy + z* = k\

a and b being regarded as arbitrary, be taken as the primitive,

the derived equations are

x a + zp = O, y b -j- zq = O,

and the elimination of a and b gives the differential equation

*V + f + 1)
=

,

of which therefore the given equation is a complete integral.
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Geometrically, the complete integral represents a doubly in-

finite system of surfaces
;
in this case they are spherical sur-

faces having a given radius and centers in the plane of xy.

In general, a partial differential equation of the first order

with two independent variables is of the form

F(x,y, z,p y q)
= o, (i)

and a complete integral is of the form

f(x, y, z, a, b)
= o. (2)

In equation (1) suppose x, y and z to have special values,

namely, the coordinates of a special point A
;
the equation

becomes a relation between p and q. Now consider any sur-

face passing through A of which the equation is an integral of

(1), or, as we may call it, a given
"
integral surface

"
passing

through A. The tangent plane to this surface at A determines

values of p and q which must satisfy the relation just men-

tioned. Consider also those of the complete integral surfaces

[equation (2)] which pass through A. They form a singly in-

finite system whose tangent planes at A have values of p and

q which also satisfy the relation. There is obviously among
them one which has the same value of p, and therefore also

the same value of q, as the given integral. Thus there is one

of the complete integral surfaces which touches at A the given

integral surface. It follows that every integral surface (not in-

cluded in the complete integral) must at every one of its points

touch a surface included in the complete integral.*

It is hence evident that every integral surface is the en-

velope of a singly infinite system selected from the complete

integral system. Thus, in the example at the beginning of

this article, a right cylinder whose radius is k and whose axis

lies in the plane of xy is an integral, because it is the envelope

* Values of x, y, and z, determining a point, together with values of p and q,

determining the direction of a surface at that point, are said to constitute an

"element of surface." The theorem shows that the complete integral is
' com-

plete
"

in the sense of including all the surface elements which satisfy the differ-

ential equation. The method of grouping the "consecutive" elements to form

an integral surface is to a certain extent arbitrary.
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of those among the spheres represented by the complete in-

tegral whose centers are on the axis of the cylinder. If we

make the center of the sphere describe an arbitrary curve in

the plane of xy we shall have the general integral in this ex-

ample.

In general, if in equation (2) an arbitrary relation between

a and b, such as b = <p(a), be established, the envelope of the

singly infinite system of surfaces thus defined will represent

the general integral. By the usual process, the equation of

the envelope is the result of eliminating a between the two

equations

f(x, y, *, a, <p(a) )
= o,

^raAx > y> *> a
> <Ka) )

= o. (3)

These two equations together determine a line, namely, the
*' ultimate intersection of two consecutive surfaces." Such

lines are called the " characteristics
"
of the differential equa-

tion. They are independent of any particular form of the

complete integral, being in fact lines along which all integral

surfaces which pass through them touch one another. In the

illustrative example above they are equal circles with centers

in the plane of xy and planes perpendicular to it.*

The example also furnishes an instance of a "
singular so-

lution
"
analogous to those of ordinary differential equations.

*The characteristics are to be regarded not merely as lines, but as " linear

elements of surface," since they determine at each of their points the direction

of the surfaces passing through them, Thus, in the illustration, they are cir-

cles regarded as great-circle elements of a sphere, or as elements of a right

cylinder, and may be likened to narrow hoops. They constitute in all cases a

triply infinite system. The surfaces of a complete integral system contain them

all, but they are differently grouped in different integral surfaces.

If we arbitrarily select a curve in space there will in general be at each of

its points but one characteristic through which the selected curve passes; that

is, whose tangent plane contains the tangent to the selected curve. These char-

acteristics (for all points of the curve) form an integral surface passing through

the selected curve
;
and it is the only one which passes through it unless it be

itself a characteristic. Integral surfaces of a special kind result when the se-

lected curve is reduced to a point. In the illustration these are the results of

rotating the circle about a line parallel to the axis of z.
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For the planes z = k envelop the whole system of spheres

represented by the complete integral, and indeed all the sur-

faces included in the general integral. When a singular solu-

tion exists it is included in the result of eliminating a and b

from equation (2) and its derivatives with respect to a and b,

that is, from

df df/=' d^=> Zb= ; (4>

but, as in the case of ordinary equations, this result may in-

clude relations which are not solutions.

Prob. 84. Derive a differential equation from the primitive
Ix -f- my -f- nz = a, where /, m, n are connected by the relation

f + m* + n
2 = 1.

Prob. 85. Show that the singular solution of the equation
found in Prob. 84 represents a sphere, that the characteristics con-

sist of all the straight lines which touch this sphere, and that the

general integral therefore represents all developable surfaces which

touch the sphere.

Prob. 86. Find the integral which results from taking in the

general integral above I
2

-\-m
2 = cos

2
6 (a constant) for the arbitrary

relation between the parameters.

Art, 23. Complete Integral for Special Forms.

A complete integral of the partial differential equation

F(x,y, z,p, q) = o (1)

contains two constants, a and b. If a be regarded as fixed and

b as an arbitrary parameter, it is the equation of a singly in-

finite system of surfaces, of which one can be found passing

through any given point. The ordinary differential equation

of this system, which will be independent of b, may be put in

the form
dz = pdx + qdy, (2)

in which the coefficients/ and q are functions of the variables

and the constant a. Now the form of equation (2) shows that

these quantities are the partial derivatives of z, in an integral

of equation (1) ;
therefore they are values of p and q which



ART. 23.] COMPLETE INTEGRAL FOR SPECIAL FORMS. 363

satisfy equation (i). Conversely, if values of/ and q in terms

of the variables and a constant a which satisfy equation (i) are

such as to make equation (2) the differential equation of a sys-

tem of surfaces, these surfaces will be integrals. In other

words, if we can find values of p and q containing a constant a

which satisfy equation (1) and make dz = pdx -f- qdy inte-

grate, we can obtain by direct integration a complete inte-

gral, the integration introducing a second constant.

There are certain forms of equations for which such values

of p and q are easily found. In particular there are forms in

which p and q admit of constant values, and these obviously

make equation (2) integrable. Thus, if the equation contains

/ and q only, being of the form

F(P, q) = O, (3)

we may put/ = a and q = b, provided

F(a, b)
= o. (4)

Equation (2) thus becomes

dz = adx -f- bdy,

whence we have the complete integral

z = ax+ by+ c, (5)

in which a and b are connected by the relation (4) so that a, b

and c are equivalent 'to two arbitrary constants.

In the next place, if the equation is of the form

*=P* + qy+f(p,q), (6)

which is analogous to Clairaut's form, Art. 10, constant values

of p and q are again admissible if they satisfy

z = az + by+f(a9 b\ (7)

and this is itself the complete integral. For this equation is

of the form z = ax + by+ c, and expresses in itself the rela-

tions between the three constants. Problem 84 of the preced-

ing article is an example of this form.

In the third place, suppose the equation to be of the form

F(z,p,q) = o, (8)
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in which neither x nor y appears explicitly. If we assume

~qz= ap, p will be a function of z determined from

F(z, p, ap) = o, say p = <p(z). (9)

Then dz pdx -|- qdy= o becomes dz = <p(z)(dx -f- #^), which is

integrable, giving the complete integral

'+*=/&+* (I0)

A fourth case is that in which, while z does not explicitly

occur, it is possible to separate x and p from y and ^, thus put-

ting the equation in the form

/,(*,/) =/.(?, 9)- (")
If we assume each member of this equation equal to a con-

stant a, we may determine/ and q in the forms

/ = (pix, a), q = (pt{y, a). (12)

and dz = />^r + ^y takes an integrable form giving

8 = f^** a
^
dx + f^y* a

^
dy + b- (*3)

It is frequently possible to reduce a given equation by trans-

formation of the variables to one of the four forms considered

in this article.* For example, the equation x^p* -\- y* q
2 = z*

may be written

\* -dx)
^

\z dy'

*The general method, due to Charpit, of finding a proper value oip consists

of establishing, by means of the condition of integrability, a linear partial dif-

ferential equation for/, of which we need only a particular integral. This may
be any value of / taken from the auxiliary equations employed in Lagrange's

process. See Boole, Differential Equations (London 1865), p. 336 ;
also For-

syth, Differential Equations (London 1885), p. 316, in which the auxiliary equa-

tions are deduced in a more general and symmetrical form, involving both p
and q. These equations are in fact the equations of the characteristics regarded

as in the concluding note to the preceding article. Denoting the partial deriva-

tives of F(x, y, z, p, q) by X, Y, Z, P, Q, they are

dx dy dz dp dq
~P

=
~Q

=
Pp+Qq

=
~XTZp -~~YTz~q

See Jordan's Cours ^'Analyse (Paris, 1887), vol. in, p. 318 ; Johnson's Differ-

ential Equations (New York, 1889), p. 300. Any relation involving one or both

he quantities p and q, combined with F= o, will furnish proper values of j>
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whence, putting x' = log x, y' =s log y, z' = log z
}
it becomes.

p'
%

-\-q'* = i, which is of the form F(p\ q')
= o, equation (3).

Hence the integral is given by equation (5) when a* -f- b* = I?

it may therefore be written

z' = ;r' cos or +y sin a-\- c,

and restoring ;r, j, and z, that of the given equation is

Z ^-j^cos
a i/Sin a^

Prob. 87. Find a complete integral for/
2

0* = 1.

(Ans. s = # sec a + jy tan or -{- .)

Prob. 88. Find the singular solution of z =px -\- qy + pq.

(Ans. z = .#y.)

Prob. 89. Solve by transformation ^ = 2^'.

(Ans. ^ = ## 4- y + b.y

Prob. 90. Solve z(p'
i

q
i

) x y.

(Ans. *l = (*+ )l + (^ + a)i + ^.)

Prob. 91. Show that the solution given for the form F(z,p, q)
= a.

represents cylindrical surfaces, and that F(z, o, o)
= o is a singular

solution.

Prob. 92. Deduce by the method quoted in the foot-note two

complete integrals of pq = px + qy.

(Ans. 2* =( + ^) +A and 5 = a? +j> ^(*
5 + <*) + &)

Art. 24. Partial Equations of Second Order.

We have seen in the preceding articles that the general
solution of a partial differential equation of the first order de-

pends upon an arbitrary function
; although it is only when

the equation is linear in / and q that it is expressible by a

single equation. But in the case of higher orders no general

account can be given of the nature of a solution. Moreover,
when we consider the equations derivable from a primitive con-

taining arbitrary functions, there is no correspondence between

their number and the order of the equation. For example, if

and q. Sometimes several such relations are readily found
;
for example, for

the equation zpq we thus obtain the two complete integrals

z = (y+ a)(x + d) and 4* =fe+ ay + /?Y.
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the primitive with two independent variables contains two ar-

bitrary functions, it is not generally possible to eliminate them

and their derivatives from the primitive and its two derived

equations of the first and three of the second order.

Instead of a primitive containing two arbitrary functions,

let us take an equation of the first order containing a single

arbitrary function. This may be put in the form u = (p{v)t

u and v now denoting known functions of x, y, z, p, and q.

<p'(v) may now be eliminated from the two derived equations

as in Art. 21. Denoting the second derivatives of z by

_ a^ _ _av_ a*fr ~s*a ' s
~d*d/ ay

the result is found to be of the form

Rr+ Ss+ Tt+U(rt-s*)= V, (i)

in which R, S, T> U, and V are functions of x, y, z, p, and q.

With reference to the differential equation of the second order

the equation ti = (p(v) is called an " intermediate equation of

the first order
"

: it is analogous to the first integral of an ordi-

nary equation of the second order. It follows that an inter-

mediate equation cannot exist unless the equation is of the

form (i); moreover, there are two other conditions which

must exist between the functions R, 5, T, and U.

In some simple cases an intermediate equation can be ob-

tained by direct integration. Thus, if the equation contains

derivatives with respect to one only of the variables, it may be

treated as an ordinary differential equation of the second order,

the constants being replaced by arbitrary functions of the

other variable. Given, for example, the equation xr p = xy,

which may be written

xdp pdx = xy dx.

This becomes exact with reference to x when divided by x*,

and gives the intermediate equation

p=yx\ogx + x<p(y).

A second integration (and change in the form of the arbitrary

function) gives the general integral

z = \yx* log x + x*<p(y) + ip(y).
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Again, the equation p -\- r -\- s = i is already exact, and

gives the intermediate equation
'

*+/+? = *+ 0C?)

which is of Lagrange's form. The auxiliary equations* are

dx = dy = , ,, . ,

of which the first gives x y = a, and eliminating x from the

second, its integral is of the form

z a-\- <p(y) -\-i~*b.

Hence, putting b = tpia), we have for the final integral

z = x + 0O) + e ''i>(x
-

y),

in which a further change is made in the form of the arbitrary

function 0.

Prob, 93. Solve t q = e* + ey.

(Ans. z =y(ey - e
x
) + (p(x) + e ytp(x).)

Prob. 94. Solve r+/ = y\

(Ans. z = \og[e
xy
ip(y) e' xy

]-\- tp(y).)

Prob. 95. Solve y\s t)
= x.

(Ans. z = (x +y) logy + <p(x) + ij>(x +y).)

Prob. 96. Solve ps qr = o. (Ans. ^ = (p(y) + ^(2).)

Prob. 97. Show that Monge's equations (see foot-note) give for

Prob. 96 the intermediate integral p = <p{z) and hence derive the

solution.

* In Monge's method (for which the reader must be referred to the complete

treatises) of finding an intermediate integral of

Rr+ Ss+ Tt = V
when one exists, the auxiliary equations

Rdy* - Sdy dx + Tdx* = o, Rdp dy+ Tdq dx = Vdx dy

are established. These, in connection with

dz = pdx -f- qdy,

form an incomplete system of ordinary differential equations, between the five

variables x, y, z, p, and
q-.

But if it is possible to obtain two integrals of the

system in the form u = a, v = />, u = <p(v) will be the intermediate integral.

The first of the auxiliary equations is a quadratic giving two values for the ratio

dy.dx. If these are distinct, and an intermediate integral can be found, for

ach, the values of p and q determined from them will make dz =p>dx-{-qdy

jntegrable, and give the general integral at once.
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Prob. 98. Derive by Monge's method for fr 2pqs -\- p*t = o

the intermediate integral/ = q <p(z), and thence the general integral..

(Ans. y + x(p(z) = ip(z).)

Art. 25. Linear Partial Differential Equations.

Equations which are linear with respect to the dependent
variable and its partial derivatives may be treated by a method

analogous to that employed in the case of ordinary differential

equations. We shall consider only the case of two independ-

ent variables x and y, and put

d* dy

so that the higher derivatives are denoted by the symbols D%
,

DD ',
D'%

,
Ds

,
etc. Supposing further that the coefficients are

constants, the equation may be written in the form

f{D,D')z = F(x,y), (1)

in which f denotes an algebraic function, or polynomial, of

which the degree corresponds to the order of the differential

equation. Understanding by an "integral" of this equation

an explicit value of z in terms of x and y, it is obvious, as in-

Art. 15, that the sum of a particular integral and the general

integral of

/(>, D')z = o (2)

will constitute an equally general solution of equation (1). It

is, however, only when f{D, D') is a homogeneous function of D
and D' that we can obtain a solution of equation (2) containing

11 arbitrary functions,* which solution is also the "
comple-

mentary function
"

for equation (1).

Suppose then the equation to be of the form

AB +A^+ --- +A"B=' (3)

and let us assume z = <p(y + mx), (4}

* It is assumed that such a solution constitutes the general integral of an

equation of the th order; for a primitive containing more than n independent

arbitrary functions cannot give rise by their elimination to an equation of the

nib. order.
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where mis a. constant to be determined. From equation (4),

Dz = mcp\y -\- mx) and D'z = <p\y -\- mx), so that Dz = mD'

z,

IPz = m*D'*z, DD'z = mD'^y, etc. Substituting in equation (3)

and rejecting the factor D'nz or {n\y -\- mx), we have

Ajn
n
-f A A

mn~ l + . . . -f A n = o (5)

for the determination of m. If m
xi
m

i}
. . . mn are distinct roots

of this equation,

^ = 0i(y + ,*) +0a(7 + ^r^) + + 0O + ***) (6)

is the general integral of equation (3).

For example, the general integral of -
_-

-
a
= o is thus

found to be z = cp(y -\- x) ~\- ip(y x). Any expression of the

form Axy + Bx -f- Cy -f- Z> is a particular integral ; accordingly

it is expressible as the sum of certain functions of x + y and

x y respectively.

The homogeneous equation (3) may now be written sym-

bolically in the form

(D m
xD'\D - mJT) . . . {D mnD')z = o, (7)

in which the several factors correspond to the several terms of

the general integral. If two of the roots of equation (5) are

equal, say, to mlt the corresponding terms in equation (6) are

equivalent to a single arbitrary function. To form the general

integral we need an integral of

{D - mxDJz = o (8)

in addition to 4>{y + m^x). This will in fact be the solution of

(D-m xD')z= rty + ms); (9)

for, if we operate with D m
x
D' upon both members of this

equation, we obtain equation (8). Writing equation (9) in the

form

p m
xq= <p(y + mx\

Lagrange's equations are

dy _ dz

m
x 0(y -\- m^x)'

giving the integrals^ + m
x
x = a, z = x(p(a) -j- b. Hence the

integral of equation (9) is

z = x<p(y+ m
xx) + tp(y + m

xx), (10)
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and regarding <fi
also as arbitrary, these are the two independ-

ent terms corresponding to the pair of equal roots.

If equation (5) has a pair of imaginary roots m = /z iv*

the corresponding terms of the integral take the form

<p(y -\-pix -\-ivx) -j- ip{y -\- ^.x ivx),

which when and
tp

are real functions contain imaginary
terms. If we restrict ourselves to real integrals we cannot

now say that there are two radically distinct classes of inte-

grals ;
but if any real function of y -j- jax -f- ivx be put in the

form X-\-iY, either of the real functions X or Fwill be an

integral of the equation. Given, for example, the equation

a
2^ . a

3*

of which the general integral is

* = 0(y + ix) + *P(y
- ix) ;

to obtain a real integral take either the real or the coefficient

of the imaginary part of any real form of cp{y -\- ix). Thus, if

(j){t)
= # we find ey cos^r and ey sin^r, each of which is an

integral (see Chap. VI, p. 245).

As in the corresponding case of ordinary equations, the

particular integral of equation (1) may be made to depend

upon the solution of linear equations of the first order. The

inverse symbol j: jyF(*> y) m the equation corresponding

to equation (14), Art. 16, denotes the value of z in

(D mD')z F(x, y) or p mq = F[x, y). (11)

For this equation Lagrange's auxiliary equations give

y + wix = a, z = j F{x, a mx)dx -\- b = F
x (x, a) -f- &,

and the general integral is

z = F
x{x,y + mx) + (p(y -f mx). (12)

The first term, which is the particular integral, may there-

fore be found by subtracting mx from y in F(x, y), inte-
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grating with respect to x
f
and then adding mx to y in the

result.*

For certain forms of F(x y y) there exist more expeditious

methods, of which we shall here only notice that which applies

to the form F{ax -\- by). Since DF{ax -f- by) = aF\ax -f- by)

and D'F(ax -f- by) == bF\ax -f- by), it is readily inferred that,

wheny~(Z>, D') is a homogeneous function of the nth degree,

f{D, D')F{ax + by) =f(a, b)F*\ax + by). (13)

That is, if t = ax -f- by, the operation of f(D, D r

) on F(t) is

equivalent to multiplication by f(at b) and taking the nth. de-

rivative, the final result being still a function of t. It follows

that, conversely, the operation of the inverse symbol upon a

function of / is equivalent to dividing by /(a, b) and integrating

n times. Thus,

/ah) F{ax+ by) =xh)ff- /** (I4)

When ax -f- by is a multiple of y -f- m t
x

t
where w, is a root of

equation (5), this method fails with respect to the correspond-

ing symbolic factor, giving rise to an equation of the form (9),

of which the solution is given in equation (10). Given, for ex-

ample, the equation

d*z . d*z d*z . . .

-

a^+a^Jy-
2
ay^ Sm{x -^ +Sm ^+^

or (D - D') (D + 2D')z = sin (x
-

y) + sin (x + y).

The complementary function is <p(y -\- x) -\- tp(y 2x). The

part of the particular integral arising from sin (x y), in which

a = i~b = 1, is / /sin tdf = - sin (> y). That aris-

* The symbolic form of this theorem is

D -m>'F(-
x ' y) = emxD'fe

- mxD
'^(x, y)dx

corresponding to equation (13), Art. 16. The symbol ev*xD' here indicates the

addition of mx to y in the operand. Accordingly, using the expanded form

of the symbol,

***D>FKy) = (i+mx^
+^~

-f . . .) F(y) = F(y+ mx),

the symbolic expression of Taylor's Theorem.
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ing from sin \x -\-y) which is of the form of a term in the com-

plementary function is n _ n f
COS ^x +^' w ^licl1 by equa-

tion (10) is \x cos ix-\-y). Hence the general integral of

the given equation is

* = <P(y + *) + $(y - 2x) +i sin {* y) i * cos (* + fi-

ll in the equation f{D, D')z = o the symbol f(D, D') t though

not homogeneous with respect to D and >', can be separated

into factors, the integral is still the sum of those corresponding

to the several symbolic factors. The integral of a factor of

the first degree is found by Lagrange's process ; thus that of

{D mD ,

a)z = o (15)

is z = e
ax
(p(y -j- mx). (16)

But in the general case it is not possible to express the

solution in a form involving arbitrary functions. Let us, how-

ever, assume
z=cehx+ky

, (17)

where c, h, and k are constants. Since Z)ehx + ky = h^x + ky

and D'ehx^ ky =kehx -
lrky

y
substitution in f(D, D')z = o gives

cf(h, k)^
xJrky = o. Hence we have a solution of the form (17)

whenever // and k satisfy the relation

AK k) = o, (18)

c being altogether arbitrary. It is obvious that we may also

write the more general solution

z= 2ce,lx + F^y
f (19)

where k F{Ji) is derived from equation (18), and c and h admit

of an infinite variety of arbitrary values.

Again, since the difference of any two terms of the form

fhx + FWy w jth different values of h is included in expression

(19), we infer that the derivative of this expression with respect

to // is also an integral, and in like manner the second and

higher derivatives are integrals.

For example, if the equation is

d*z dz

l?~d~y^'
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for which equation (18) is I? k = o, we have classes of in-

tegrals of the forms

** + h
\(x + 2hyf + 2y)\ f* +

*"'[(* + 2/^)
3+ 6>(^r+ 2hy)\

In particular, putting // = owe obtain the algebraic integrals

c
x
x

t c,(x
2 + 2y), c

3(x
z+ 6xy), etc.

The solution of a linear partial differential equation with

variable coefficients may sometimes be effected by a change of

the independent variables as illustrated in some of the exam-

ples below.

Prob. 99. Show that if m
1

is a triple root the corresponding
terms of the integral are x*<p(y + m

xx) ~V *^(jH- ^)+ X(y+^ix)'

d*z tfz tfz
Prob. 100. Solve 2^^ 3^-^ 2 2

= o.
dx dxdy dy

ci 9^
1

d'* d
5
z I

Prob. 101. Solve^ + 2 + = ? .

(Ans. z = 0(*) + ip(x + j) + #(* +jf) JM log*.)

Prob. 102. Solve (Z>
2 + 5_>Z>' + 6Dn)z

= {y
-

2x)"\

(Ans. z = <p(y 2x) + tp(y 3*) + x log (jy 2*).)

d*z d'z dz
Prob. 103. Solve 5-^- -f- 5 2=0.

dx
2

dxdy dy

Prob. 104. Show that for an equation of the form (15) the solu-

tion given by equation (19) is equivalent to equation (16).

-. e ,
1 d*z 1 dz 1 d*z 1 dz .

Prob. 105. Solve r~i r -5^3 :r- by transposi-* 3^
a ^ 3

9# / dy y* dy
tion to the independent variables x* andjv

3
.

Prob. 106. Solve^g + 2^+/g- = o.
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Chapter VIII.

GRASSMANN'S SPACE ANALYSIS.

By Edward W. Hyde,
Professor of Mathematics in the University of Cincinnati.

Art. 1. Explanations and Definitions.

The algebra with which the student is already familiar deals

directly with only one quality of the various geometric and

mechanical entities, such as lines, forces, etc., namely, with

their magnitude. Such questions as How much? How far?

How long ? are answered by an algebraic operation or series of

operations. Questions of direction and position are dealt with

indirectly by means of systems of coordinates of various kinds.

In this chapter an algebra* will be developed which deals

directly with the three qualities of geometric and mechanical

quantities, viz., magnitude, position, and direction. A geomet-
ric quantity may possess one, two, or all three of these prop-

erties simultaneously; thus a straight line of given length has

all three, while a point has only one.

The geometric quantities with which we are to be concerned

are the point, the straight line, the plane, the vector, and the

plane-vector.

When the word " line
"

is used by itself, a "
straight line

"

will be always intended. A portion of a given straight line of

definite length will be called a " sect
"

; though when the length

* The algebra of this chapter is a particular case of the very general and

comprehensive theory developed by Hermann Grassmann, and published by

him in 1844 under the title
" Die lineale Ausdehnungslehre, ein neuer Zweig

der Mathematik." He published also a second treatise on the subject in 1862.
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of the sect is a matter of indifference, the word line will fre-

quently be used instead. Similarly, a definite area of a given

plane will be called a "
plane-sect."

If a point recede to infinity, it has no longer any significance

as regards position, but still indicates a direction, since all lines

passing through finite points, and also through this point at

infinity, are parallel. Similarly, a line wholly at infinity fixes

a plane direction, that is, all planes passing through finite

points, and also through this line at infinity, are parallel. Thus

a point and line at infinity are respectively equivalent to a line

direction and a plane direction.

A quantity possessing magnitude only will be termed a
" scalar

"
quantity. Such are the ordinary subjects of algebraic

analysis, a, x, sin 0, logz, etc., and they may evidently be in-

trinsically either positive or negative.

The letter T prefixed to a letter denoting some geometric

quantity will be used to designate its absolute or numerical

magnitude, always positive. Thus, if L be a sect, and Pa. plane-

sect, then TL is the length of Z, and TP is the area of P. That

portion of a geometric quantity whose magnitude is unity will

be called its
"
unit," and will be indicated by prefixing the

letter U
\
thus UL = unit of L = sect one unit long on line Z-.*

Hence we have TL . UL =s L.

Art. 2. Sum and Difference of Two Points.

In geometric addition and subtraction we shall use the or-

dinary symbols -{-, , =, but with modified significance, as will

appear in the development of the subject.

Every mathematical, or other, theory rests on certain fun-

damental assumptions, the justification for these assumptions

* The word "scalar" and the use of the letters T and U, as above, were

introduced by Hamilton in his Quaternions. T stands for tensor, i.e., stretcher,

and TL is the factor that stretches UL into L. The notation
\
L

\
for absolute

magnitude is not used, because the sign |
has been appropriated by Grassmann

to another use.
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lying in the harmony and reasonableness of the resulting

theory, and its accordance with the ascertained facts of nature.

Our first assumption, then, will be that the associative and

commutative laws hold for geometric addition and subtrac-

tion, that is, whatever A, B, C may represent, we have

A + B+ C= (A + )+ C^zA +(B+ C)
= A + C+B = (A + C) + B.

We shall also assume that we always have A A = o, and

that the same quantity may be added to or subtracted from

both sides of an equation without affecting the equality.

Now let/, ,/>2
be two points, and consider the equation

A +A -A =A + (A -A) = A- (0

In this form we have an identity. Write it, however, in the

form

A -A +A = (A -A) +A =A > (2)

and it appears that/, /, is an operator that changes/, into

^>2by being added to it. Conceive this change oi p Y into/2
to

take place along the straight line through p x
and />2 ;

then the

operation is that of moving a point through a definite length

or distance in a definite direction, namely, from/, to/>2
. This

operator has been called by Hamilton " a vector,"
* that is, a

carrier, because it carries/, rectilinearly to p^. Grassmann gives

to it the name Strecke, and some writers now use the word
" stroke

"
in the same sense.

Again, p^ p x
is the difference of two points, and the only

difference that can exist between them is that of position, i.e.

a certain distance in a certain direction.

Hence we may regard /2 -/, as a directed length, and also

as the operator which moves p x
over this length in this direc-

tion. Writing^ /, = e, equation (2) becomes

A + e=A- (3)

* See the first of Hamilton's Lectures on Quaternions, where a very full

discussion of equation (2) will be found. Also Grassmann (1862), Art. 227.
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Thus the sum of a point and a vector is a point distant from

the first by the length of the vector and in its direction.

Since A A ~" (A ~~' A)> ** appears that the negative

of a vector is a vector of the same length in the opposite

direction.

If A A >
or A =A>A must coincide with A because

there is now no difference between the two points.

The question arises as to what, if any, effect the operator

A -A should have on any other point A> that is, what is the

value of the expressionA A+A?
We will assume that it is some point A> so that we have

A-A+A=A,
^ A-A=A-A- (4)

This implies that the transference fromA toA 1S the same

in amount and direction as that from A
to A> that is, that A> A> A> A are the

four corners of a parallelogram taken in

order. Thus equal vectors have the same
1

length and direction, and, conversely,

vectors having the same length and direction are equal.

Note that parallel vectors of equal length are not neces-

sarily equal, for their directions may be opposite.

Equation (4) may also be written

A+A=A+A, (5)

so that, whatever meaning may be assigned to the sum of two

points, if we are to be consistent with assumptions already

made, we must have the sum of either pair of opposite corner-

points of a parallelogram equal to the sum of the other pair.

The sum cannot therefore depend on the actual distances

apart of the points forming the pairs, for the ratio of these two

distances may be made as large or as small as we please.

If bea scalar quantity, ne will denote that the operation

is to be performed n times on a point to which ne is added,

that is, the point will be moved n times the length of e
; hence



378 grassmann's space analysis. [Chap. VIIL

ne is a vector n times as long as e, and having the same or the

opposite direction according to the sign of n.

In the figure above, let

A-A = e
i> A A = ei A-A = e

3> A A = e4
.

.Then

e, + e2
=A -A +A -A =A -A +A ~A =A~A = *. (5)

since, by Eq. 4, /, A =A T A-

Also, e
a
-

e, =/, - p%
= e

4
. (6)

Hence, if two vectors are drawn outwards from a point, and

the parallelogram of which these are two adjacent sides is com-

pleted, then the two diagonals of this parallelogram will repre-

sent respectively the sum and difference of the two vectors,

the sum being that diagonal which passes through the origin

of the two vectors, and the difference that which passes through
their extremities.*

Again,A -p x +/, -pt +A -/, = o = e, + e, + (- e
t) ;

hence the sum of three vectors represented by the sides of a

triangle taken around in order is zero.

Similarly, if p it p9f . . ,pn be any ;/ points whatever taken as

corners of a closed polygon, we shall have

(A-A)+(A-A)+(A-A)+ +(A -A-,)+(A-A)= o ;

that is, the sum of vectors represented by the sides taken in

order about the polygon is zero. By "taken in order" is not

meant that any particular order of the points must be observed

in forming the polygon, which is evidently unnecessary, but

simply that, when the polygon is formed, the vectors will be

the operators that will move a point from the starting position

; along the successive sides back to this position again, so that

the final distance from the starting-point will be nothing.

Art. 3. Sum of Two Weighted Points.!

Consider the sum **,A+wtA> in whichm
x
and m^ are scalars,

that is, numbers, positive or negative, and pit pt
are points.

* Grassmann (1844), 15.

f Grassmann (1844), 95, and (1862), Art. 227.
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The scalars m
x
and w

2
will be regarded as values or weights

assigned to the points p i and/2
. When any weight is of unit

value the figure I will be omitted, so that p means I/, and is

called a unit point. Occasionally, however, a letter may be

used to denote a point whose weight is not unity.

To assist his thinking, the reader may consider the weights

initially as like or unlike parallel forces acting at the points.

In order to arrive at a meaning for the above expression

we shall make two reasonable assumptions, which will prove to

be consistent with those already made, viz., first, that the sum is

a point, and second, that its weight is the sum of the weights

of the two given points. Denoting this sum-point by/, we
write

*iA + .A = (mi + **t)A (7>

Transposing, we have m
l(p l p) = m

2(p /a),
or

a -/ _/-a ,

8V

Both members of (8) are vectors, and, being equal, they must r

by Art. 4, be parallel. This requires that/ shall be collinear

with /, and /2
. Also, since /, / and / /a

are vectors whose

lengths are respectively the distances from/, to p and from/
to /2 ,

it follows that these distances are in the ratio of m^ to m
x
.

Hence, / is a point on the line /,/2 whose distances from/,
and /2

are inversely proportional to the weights of these points.

We shall call / the mean point of the two weighted points.

If m
x
and m^ are both positive, (8) shows that/ must lie be-

tween /, and/3 ;
but if one, say m^, is negative, let mi=m^

Thus

*i(A 7) = **/(A /). (9>

and / is on the same side of each point, that is, its direction

from each point is the same. Also, since its distances from the

two points are inversely as their weights, / must be nearest,

the point whose weight is greatest.
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Case when m
1 -|- m^ = o, or m

%
= m

x

* With this con-

dition equations (7) and (8) become

0*iA+*,A = *fi(/i A) = o-A (10)

and /A =// (")

Thus/ is in the same direction from each point, that is, not

between them, and yet is equidistant from them. This re-

quires either that the two points shall coincide, that is, p%
= p iy

which evidently satisfies (10) and (11); or else, p i and/a being

different points, that/> shall be at an infinite distance. Thus

the sum is in this case a point of zero weight at infinity/)-

Eq. (10) shows that a zero point at infinity is equivalent to a

vector, or directed quantity, as stated in Art. 1. It has been

shown in Art. 2 that A =A *s tne condition that p x
and /,

coincide ;
let us consider the equality of weighted points in

general, say m
lp l
=m

ip^. Hence, by (7), there is found

miPi
~~ m*P%

=
(
m

i

~ m^)P nence
>
since / cannot be zero,

m
l

;
a
= o, or m

l
= m

% ;
and therefore m

l(p1 pu)
= o, or,

since m^o, p x p%
= 0, that is, /, =pr Therefore, if any

two points are equal, their weights must be the same and their

positions identical, that is, they are the same point.

Exercise 1. To find the sum and difference of the two

weighted points 3/, and pt
:

3A +A = 4A 3A -A = 2/,

and the mean points are as shown in
2 1 3 _

p" *f T ~~*j
the figure. The reciprocals of the

2p> BPi ip p, distances of p, pv and / from p9 ,

viz., -J, , |, are in arithmetical progression, hence the points

form a harmonic range.

Exercise 2. Given a circular disk with a circular disk of

*Grassmann (1862), Art. 222.

I Compare the case of the resultant of unlike parallel forces of equal

magnitude.



Art. 4.]
' sum of two weighted points. 381

half its radius removed, as in the figure ;
to find the centroid

of the remaining portion.

Take/, at center of large circle, A at center

of small circle, and A at the point of contact
; t$

thenA = |(A -f- A)- The areas of the two cir-

cles are as I : 4 ;
call them 1 and 4. Then it is as

if there were a weight 4 at A> and a weight - 1 at /s ;
hence

P = [4A - i(A +A)] + 3 = (7A - A) + 6.

Prob. 1. Show that A> A> miP\ + waA> anc* ^,A ~~ waA are

four points forming a harmonic range.

Prob. 2. An inscribed right-angled triangle is cut from a circular

disk
;
show that the centroid of the remainder of the disk is at the

point

(37T 2 sin 2a) p x A sin 2a

$(7t sin 20L)

ifA is the center of the circle, p% the opposite vertex of the triangle,

and a one of its angles.

Art. 4. Sum of any Number of Points.

As in the last article we assume the sum to be a point

whose weight is equal to the sum of the weights of the given

points ; thus,
n n

2mp = p2m. ( 1 2)

n

Let e be some fixed point, and subtract e2m from both
1

sides of (12) ;
thus we have

2m(p e)
= (/ e)2m, (13)

1 1

an equation which gives a simple construction forA
n n

If 2m = o, then m
1
= 2m, and

2mp
2mp = m,p,+ 2mp = m\ A - ~

J> (i4>
2m



382 grassmann's space analysis. [Chap. VIII.

so that the sum becomes the difference of two unit points, or

a vector whose direction is parallel to the line joining px
with

the mean of all the other points of the system, and whose

length is m
x
times the distance between these points. Since

any point of the system may be designated as p if
it follows

that the line joining any point of the system to the mean of

n

all the others is parallel to any other such line. If 2mp = o,
i

equation (14) shows that/j is the mean of all the other points

of the system, and, since any one of the points may be

taken as plt any point of the system is the mean of all the

others.

Let n = 3 in (12) and (13); then

**iA + W*A + m%P% = Oi + ^2+ f*]}p, (15)

*i(A - ')+ mlP~ e
) + *(P t-')=(**i+*%+int)(p--e), (16)

and/ is on the line joining the point m xp x + m
tpt with/,, and

therefore inside the triangle AAA ^ tne ms are a^ positive.

If mz be negative and numerically less than m
x -\- w3 , then/

will have passed across the line p^p2
to the outside of the tri-

angle. If m
x
and m^ are negative and their sum numerically

less than m
s ,

then p will have passed outside the triangle

through p% , i.e., it will have crossed p^ps
and pzpv The point

e must evidently always be in the plane pxp^pv

As a numerical example let m
x
=

3, ;/z
3
= 4, m3

=
5, so

that (16) becomes

p-e = f(ps -e)+ 2(A - e)
- |(A - ')>

Now, since e may be any point whatever, put e=pa ;
then

p p3
= |(A p3 ) -f- 2(pa ps),

and the construction is shown

in the figure. pt -p3
= |(pt /,), and J pk

= 2{p% /,).

As another example take/ = 4/, -f" 5A ~ 2A ^A> or, by

(13), making e=p

P -A = 4(A -A) + 5(A -A) - 2(A - A)

= A -A+A A +/ - A-
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When any number of geometric quantities can be connected

with each other by an equation of the form 2m/> = o, in which

the m's are finite and different from zero, then they arc said to

be mutually dependent, that is, any one can be expressed in

terms of the others. If no such relation can exist between the

*
/ /

/

quantities, they are independent. We obtain from what has

preceded the following conditions:

That two points shall concide,

**iA + .A = 0- (17)

That three points shall be collinear,

A + A + *./. = o. (18)

That four points shall be coplanar,

f*xPx + **%Px + / + tn
Kph

= o. (19)

It follows that three non-collinear points cannot be con-

nected by an equation like (18) unless each coefficient is

separately zero. Similarly four non-coplanar points cannot be

connected by an equation like (19) unless each coefficient is

separately zero.

The significance of these statements will be presently illus-

trated.

The following are corresponding equations of condition for

vectors :

That two vectors shall be parallel,

*ii+ *
9ea
= o. (20)
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i 4

i i

That three vectors shall be parallel to one plane,

*ii + n,e,+ n
3
e

z
= o. (2i>

These conditions follow from the results of Art. 2, or from

equations (17) and (18) by regarding the e's as points at infinity..

If in addition to (21) we have

n
t + n,+ n

3
= o, (22)

the extremities of the three vectors, if radiating from a point,.

will be collinear : for, let e . . . e
3
be four points so taken that

e
x

e9 =3 e, , e
%

e% = et , e% e
%
=

, ; then (21) becomes

*,(',
-

'.) + *.('.
-

'.) + "Ae*
-

'.)
= O,

or by (22) n
x
e

x + n^+ n
3
e
s
= o,

which by (18) requires el9 e^, e
z
to be collinear.

It may be shown similarly that

= o (23)

are the conditions that four vectors radiating from a point shall

have their extremities coplanar.

Exercise 3. Given a triangle e^e x e^ and a point p in its

plane; pe cuts e
x
e% in qot

pex
cuts e

%
e
9

in q x >pe% cuts

Vi ^ft&cuts^in/.,.
^ cuts ^

a
<? in /, ,

and q qx

cuts * *, in pa
: to show that

p ,px , and/, are collinear.

Let/^v.+V.+V,;
then ^ , ^, , ^3 coincide re-

spectively with n
x
e

x -f- ^/2 ,

/,+ n e
,
and ^ + n,ex

because p lies on the line joining t%

with q , etc. Hence, if xoJ xx ,yof yx
are scalars,

A = *<A + *', = yi,n x
e

x + ,*,) +yx{n%e%+ ,*.) I

hence (*, -y x
n )e + [xx

-
>,*,>,

-
n,{y +yx)et

= o.

Now the ^'s are not collinear, and yet are connected by a
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relation of the form of equation (18); hence, as was there

shown, each coefficient must be zero
; accordingly

* -ysh = *xyj*x = y> + ?x = >

whence we find x : x
x
= n : nv

hence (n ,)/,
= n e n

1
e

1 ,
and similarly

fa *)/. = /.
- Vu (*. .)a = vrVf

Adding, we have

(*,
-

,)A + (, - .}?, + (. - ,)A = o ;

therefore, by (18), pof plt / are collinear.

2 2

Exercise 4. Let / = 2ne -i- ^w be any point in the plane

of the triangle e^e x
e
%

: show that lines through the middle

points of the sides *-/ ,
e
ue^ ,

and e e
x
of the triangle parallel

to e p, e
yp, and ej> meet in a point

2

/ = [(, + *,)*. + (*. + .y, + (. + ,yj + 2^.

By the conditions the vector from the middle point of e
xe^

to p' is a multiple of the vector e p ;
hence

/ = #', + '.)+ *('. ~P) = i(e + O+j(^a -/),

or, substituting value of/,

/ = 4(', + e
%)+ x{ea

- 2ne+2n) = i(eQ+ e
x)+jiet-2ne+2n).

hence [{x i)2n 4- n (y x)]e + n
x(y x)e x

+ [(*
- Sfi*+ n& - *)> = O ;

therefore, as in the previous exercise, each coefficient must be

zero, whence x = y = -J, and substituting we find p' as above.

It follows also that the distances of p' from the middle points

of the sides are the halves of the distances of p from the oppo-
site vertices.

2

Prob. 3. Show that e = $2$ is collinear with p and p' of Exer-
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I1I.

cise 4. Also that, by properly choosing/, it follows that e is col-

linear with the common point of the perpendiculars from the vertices

on the opposite sides, and the common point of the perpendiculars
to the sides at their middle points.

Prob. 4. Given two circles and an ellipse, as in the figure, with

centers at *
, p% ,

and px
. Radii of circles 4 and

1, axes of ellipse 2 and 4, small circle and ellipse

touching large circle at e
9 and e

x respectively,
e e

l
e
2
an equilateral triangle: show that the cen-

troid of the remainder of the large circle, after

the small areas are removed, will be at

/ = tV(iK ~A -
2/1)=-BV(S9^

~
4*i

-
3'.).-

Prob. 5. If I of a sheet of tin in the shape
of an isosceles triangle be folded over as in

the figure, show that its centroid is given by

3^= *[35('t+ *,)+ "'J-

Prob. 6. If a tetrahedron ene 1
e
i
e
3
have a

tetrahedron of -J of its volume cut off by a

plane parallel to e
a
e

t
e
2 ,

and one of ^ of its

volume cut off by a plane parallel to e
x
e
%
e
% ,

show that the centroid of the remaining solid is at

/= dn>(227*o + 175*3 + 239(^1 + ',) )

Art. 5. Reference Systems.

Let p be any unit point, e
,
e xt e^ three fixed unit points,

and w, x,y scalars
; then, writing

p = we, + xe
x + ye% , (24)

we must have also, because/ is a unit point,

w+ x+y-i, (25)

and p is the mean of the weighted points we
, xext yex

. The

point/ may occupy any position whatever in the plane e
Q
e

x
e
9 ;

for it is on the line joining we, + xe
x
with e%i and by varying

w
y and w+ x, remaining constant, p may be moved alongx
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this line from oo to -f- oo
;
while by varying the ratio the

x

point we -j-
xe

x may be moved from oo to + along e elf

and thus the first line will be rotated through 1 80 degrees, and

/ may thus be given any position whatever in the plane.

A system of unit points to which the positions of other

points may be referred is called a reference system, and the

triangle e e^2
is a reference triangle. For reasons that will ap-

pear later, the double area of this triangle will be taken as the

unit of measurement of area for a point system in two-dimen-

sional space.

Similarly, in solid space, taking a fourth point e
a ,
we write

p we, + xe
x +ye% + ze (26)

which implies also w-\-x-\-y-\-z~\\ (27)

and p may be shown as above to be capable of occupying any

position whatever in space by properly assigning the values of

w, x,y,z\ so that <?,... et form a reference system for points
in three-dimensional space. The tetrahedron e^ete%

is called

the reference tetrahedron, and six times its volume will be

taken as the unit of volume for a point system in three-dimen-

sional space.

Eliminating w between (24) and (25), we have

P = ? + *(',
- O +jK<. ~ O, (28)

from which it may also be easily seen that p may be any point
in the plane e

%ex
ev Writing/ e = p, e

t

- e = el} e, e = e2 ,

<28) becomes p = xe
t + ye2 , (29)

and e,, e2
form a plane reference system for vectors.

Similarly, from (26) and (27) we find

9 = **x +?et + *, , (30)

and 6 e
a ,

e
3
are a reference system for vectors in solid space,

any vector whatever being expressible in terms of these

three.

If, in equations (29) and (30), the reference vectors are of
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unit length and mutually perpendicular, we have unit, normal

reference systems, and in this case z., z2 ,
z
3
will generally be used

instead of e,, e
9 , e,.

Exercise 5. To change from one reference system to an-

other, say from e
,
e
lt e^ to e ', e

t

'

% e
t
\

The new reference points must be connected with the old

ones by equations such as

e = /.'.' + J/' + lf{% e
i
=

.'.' + *// + *V'.

Then any point/ = x e -{- x x
e

x -f- xt
e
t
will be expressed in

terms of the new reference points by substituting the values of

e
, etc., as given. If e \ e

x ,
et

'
are given in terms of the old

points, e
9 ,

e
x , e^ may be found by elimination. Thus, if e

'= 2ley

e
x

' = 2me, e^ = 2ne, we have at once

K



/o
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Art. 6. Nature of Geometric Multiplication*

The fundamental idea of geometric multiplication is, that a

product of two or more factors is that which is determined by
those factors.

Thus, two points determine a line passing through them,

and also a length, viz., the shortest distance between them
;

hence /,/, = L is the sectf drawn from p x to/2 ,
or generated

by a point moving rectilinearly from p l
to p^.

The student should note carefully the difference between

p^p^ and/>2 px ; they have the same length and direction, but

the sect p^pt
is confined to the line through these two points,

while the vector/, p x
is not. The sect has position in addi-

tion to the direction and length possessed by the vector.

Again, in plane space, two sects determine a point, the

intersection of the lines in which they lie, and also an area, as

will appear later, so that Z,Z,3
== p, in which p is not in general

a unit point. In solid space, however, two lines do not, in

general, meet, and hence cannot fix a point ;
but two sects, in

this case, determine a tetrahedron of which they are opposite

edges.

It appears, therefore, that a product may have different

interpretations in spaces of different dimensions. Hence we
will consider separately products in plane space, or planimetric

products, and those in solid space, or stereometric products.

Products of the kind here considered are termed " com-

binatory," because two or more factors combine to form a

new quantity different from any one of them. This is the

fundamental difference between this algebra and the linear

associative algebras of Peirce, of which quaternions are a

special case.

Before discussing in detail the various products that may
arise, we will give a table which will serve as a sort of bird's-eye

view of the subject.

* Grassmann (1844), Chap. 2
; (1862), Chap. 2.

f See Art. I.
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In this table and generally throughout the chapter we shall

use/, A>A> etc., for points; e, e e
3 , etc., for vectors; L, L

x ,

etc., for sects, or lines; ?/, Tjlf etc,, for plane-vectors ;
and P, Plf

etc., for plane-sects, or planes. Also/,/,, etc., as used in this

table will not generally be unit points.

The products are arranged in two columns, so as to bring

out the geometric principle of duality.

Planimetric Products.

AA = L.
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Laws of Combinatory Multiplication. All combinatory

products are assumed to be subject to the distributive law ex-

pressed by the equation

A(B+C)=AB + AC.

The planimetric product of three points or of three lines,

and the stereometric product of three points or planes, or of

four points or planes, are subject to the associative law. That is,

In Plane Space :

AAA =AA -A =A AA I
L

x
L%Lt

= L,L 2
.L

3
= L

t
. L,L 3

.

In Solid Space :

AAA =A AA =AA A ; ftV. = P. tt = Pf, ft

AAAA =A AAA =AA -A/* ;

PPPPP PPPPP pp

The commutative law of scalar algebra does not, in general,

hold. Instead of this, in the products just given as being asso-

ciative, a law prevails which may be expressed by the equation

AB= - BA,

from which it follows that the interchange of any two single

factors of those products changes the sign of the product.*

Since vectors are equivalent to points at oo
,
the associative

law holds for e^e^ and rjjjjjf

Art. 7. Planimetric Products.

Product of Two Points.f This has been fully defined in

Art. 6, and it is evident from its nature as there given that

AA = -AA- (32)

If p p x ,
this becomes p xp x

= o, which must evidently be

true, since the sect is now of no length.

Also, A(A -A) =AA -AA = AA- (33)

* Grassmann (1862), Chap. 3. + Grassmann (1862), Arts. 245, 246, 247.
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But/2 p x
is a vector, say, e

;
hence

A e = AA \ (34)

or the product of a point and a vector is a sect having the di-

rection and magnitude of the vector
; or, again, multiplying a

vector by a point fixes its position by making it pass through
the point.

To find under what conditions pp' will be equal to /,/2
.

Take any other point /3
in the plane space under consideration,

and write / = x,p x + xj>% +xj> p' =-y,p x + y,p, + yj> with

the conditions for unit points 2x = 2y = o.

xn x
Then pp' -

y l y,
AA +

y* y
PJ*+

y* y>
AA-

If this is to reduce to /,/, we must have the third condition

jf
3 jj/3

x
a y* x*y x

x
x ys
= o, which requires that x

a
= y%

= o,

unless the coefficient of /,/, is to vanish also. Thus //' must

be in the same straight line with/,/,. If, moreover, in addition

x
xy^ x^y x

= 1, we shall have pp' /,/2 . Hence pp' is equal

toAA when, and only when, the four points are collinear, and

p' is distant from/ by the same amount and in the same direc-

tion that/, is from/,.

Product of Three Points. By Art. 6 the product is what

is determined by the three points. In solid space they would

fix a plane, but, as we are now confined to plane space, this is

not the case. The points evidently fix either a triangle or a

parallelogram of twice its area, and the product AAA will be

taken as the area of this, or an equivalent, parallelogram.

This area is taken rather than that of the triangle, because

it is what is generated by/,/, as it is moved parallel to its

initial position till it passes through /3
.

We have pjtj>t
= p x ./a/ 3

= -/, .p3p, = -AAA. so that

if we go around the triangle in the opposite sense the sign is

changed. As this product possesses only the properties of mag-
nitude and sign it is scalar.

3 3 3

Write / = 2xp, p' = ^yp y p" = *2zp ;
then
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x
x
x

2
x

z

PP'P" = y x y, y*P,P.P*\ (35)

x
\
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determined by L
1
and Z

2
is then the same that we have

given as the value of //,/,. We write therefore

4A =AA -AA =AAA A- (38)

The third member of (38) is not to be regarded as derived

from the second by ordinary transposition and reassociation of

the points, for the associative law does not hold for the four

points taken together, since //,/ -A = - Tne tnird member

simply results from the definition of L
XL^ It may be taken

as a model form which will be found to apply to several other

cases, for instance to (38) when points and lines are inter-

changed throughout. Thus, if/, = L L
t

and /, = Z Z
2
we have

AA = L L
l

. Z Z
2
= L L

X
L

2
. Z . (39)

For take //and //so that/,// = Z, and/2//= L
% \ p xp%

is

evidently some multiple of Z
, say nL ;

hence

AA = *. = ^(AA -A A') (AA AA')

= ^AA'-A)-(AAA'-A)> by (38),

= -
2 -AAA'-AAA' -AA> because /,/,// and

AAA' are scalar,

= l

~- (AA AA' -AAO 4,, by (38),

= Z Z,Z 2
. Z , which was to be proved.

Product of Three Sects. The method has just been indi-

cated, but we may also proceed thus : Let the lines be

Z
, Z,, Z

a ,
and let /,/,,/-, be their common points. Take

scalars n
Q ,

n
l
n%

so that Z = n
9p xp etc., then

Z Z,Z2
= ,*>*, ./,/, AA AA = n

*
nJh AA AA -AA

= - n n^ .p,p }p .pip p 1
= ^^(AAA)2

- (40)

* Grassmann applies the terms "eingevvandt
" and "

regressiv
"

to a prod-

uct of this kind, the first term being used in the Ausdehnungslehre of 1844,

and the second in that of 1862. See Chapter 3 of the first, and Chapter 3^

Art. 94, of the second.
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Product of a Point and Two Sects. Let/ be any point and

let Z, and Z
9
be as in (38) ; then

pL,L%
= p.p p, -Pop, =AAAA A =AAA ./A- (40

It has been here assumed that pL x
L

2 p . L
XL^. The prod-

uct is not associative, for pL x
. Z

2
is the line Z

2
times the

scalar pL x ,
a different meaning from that assigned in (41). As

a rule, to avoid ambiguity, the grouping of such products will

be indicated by dots.

Product of Two Parallel Sects. Let them be^e and np3e;

then, as in (38),

A* np%e = n .p x
e .pte = n.ep1

. ept
= n . ep %

. e, (42)

that is, a scalar times the common point at 00 .

Addition and Subtraction of Sects. Let Z, and Z2 be two

sects, p their common point, and p x
and pt

so taken that

A =AA A = PoP, ;
then

A + A =AA +AA =A(A +A) = zp p, (43)

p being the mean of/, and/2 ;
hence the sum is that diagonal

of the parallelogram which passes through p . Also

A-A=A(A-A), (44)

so that the difference of the two passes also through p and is

parallel to the other diagonal of the parallelogram determined

by Z, and Z
2
.

If the two sects are parallel let them be n
xp x

e and #
2/2e;

then

*iAe + n,P^ = (Mi + M.) = (, + ,)/ (45)

so that the sum is a sect parallel to each of them, having a

length equal to the sum of their lengths, and at distances from

them inversely proportional to their lengths.

If w
2
= n

x
the two sects are oppositely directed and of

equal length, and the sum is

(A ->.e) = ,(A -A). (46)

Avhich, being the product of two vectors, is a scalar area.
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Consider next n sects pj
e

1 ,p3
e
2 ,

. . . pnen ,
and let e be some

arbitrarily chosen point; then

i/ = e.Se
- e 2e + |/e

= e 2e + !(/ - *,)e. (47)

The second term of the third member of this equation, being a

sum of double vector products, that is, a sum of areas, is itself

an area, and is equal to the product of any two non-parallel vec-

tors of suitable lengths. Therefore, a and /3 being such vec-

tors, write 2e = a and 2(p e )e = a/3. Hence (47) become

2pe = e a + aft = (e
-

fl)a . (48)

Let q be some point on the line 2pe ;
then

q2pe =0 = qe%a + qa/3 = qe a + a/3,

by (37) hence qeQ
a = a/3 = /3a.

The figure presents the geometrical mean-

ing of the equation, and hence it appears that

qa{ 2pe) is at a perpendicular distance from

e of

afl _ 2{p - e )e

Ta
~

T2e
' (49)

It is easily seen that a sect possesses the exact geometrical

properties of a force, namely, magnitude, direction, and position,

and the discussion of the summation of sects which has just

been given corresponds completely to the discussion of the re-

sultant of a system of forces in a plane. In this algebra, then,

the resultant of any system of forces is simply their sum, and

this will be found hereafter to be equally true in three-dimen-

sional space. The expression in (46) corresponds to a couple,

as does also the 2(p e )e of (47); and this equation proves

the proposition that any system of forces in a plane is equiva-

lent to a single force acting at an arbitrary point, e , and a

couple. Equation (49) gives the distance of the resultant from

this arbitrary point.

Exercise 7. To find x, y, z from the scalar equations
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Multiply the equations by pvi p%% and pt respectively, and

add
; hence

3 3 3 3

x^ap -f- y~2bp + z~2cp = 2dp.
i i ii-

Now 2ap, ^bp y etc., are points : multiply the equation just

written by 2ap.2bp; thus

z2ap . ^bp^cp = 2ap . 2bp . 2dp,

because 2ap . 2ap = o, etc.; therefore

z= 2ap.2bp.2dp+2ap. 2bpcp = [>,, <K|>t , 2 , <rj,

a very simple proof of the determinant solution. Of course

x and y will be found by multiplying by the other pairs of

points.

e 2
f

Exercise 8. Forces are represented

by given multiples of the sides of a par-

allelogram ; determine their resultant.

Let the parallelogram be double the

triangle e
tt
e

l
ev and the forces

k,ene, + k
x
e

x(e%
- e ) + k,e,(e

-
e) + k

a
e
2
e = 2pe

= (kQ+ k
x)e e

x + (ks + k
t)e x

e
t + (k%+ kt)ete9 .

Multiply by e e
x
to find where the resultant cuts this line

;

then

or */, cuts the resultant at the point

[X^+ A,),, _(*,+ *,>,] -5- (6,-i,).

Similarly the resultant cuts the other sides of the reference

triangle at [(,+ kfc - {k + k
t)ex] -4- (,+ 3

- k k
x )

and

at [(k9 + k
x)e%
- {k

x + *,>,]
-

(ku
- ka).

Suppose k = k
x
= ^ = ,; then each of the three points

just found recedes to infinity ; but in this case 2pe reduces to

2^(y,'+^+ V.)- 2&fa'*X'* **)> and the system is

equivalent to a couple.

Prob. ii. Construct the resultant of Exercise 8 when k = i,

k = 2, k.~ 3, &
a
= 4; when =

1, k
x 2, k

2
=

3, k
a
= 4; when

^ = 3,^ = ^=2,^= 1
;
and when k

x

=
k^
=

1, ka
=

3
= 2.
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Prob. 12. There are given n points /, . . .pn \
to find a point e

such that forces represented by the sects ep x , ep^ , etc., shall be in

equilibrium. (The equation of equilibrium is 2ep = e2zp = ep = o.

Hence e coincides with the mean point of the/'s.)

Prob. 13. If a harmonic range *,,/, e^ p' be given, together with

some point e not collinear with these points, show that

<V, P <V/ = -
*o P*% '.A-

(Let p = m
x
e

x -f- m^e^ and p' = w/, m
%
e
% ,

as in Exercise 2 of

Art. 3.)

Prob. 14. Show that the relation of Prob. 13 holds for any four

points whatever taken respectively on the four lines e elt e p, e etf

Q p'. If the four points are all at the same distance from e
Q ,

show

that the areas e e
x p, etc., become proportional to the sines of the

angles between e e
x
and e p, etc.

Art. 8. The Complement*

Taking point reference systems, or unit normal vector ref-

erence systems, as in Art. 5, the product of the reference units

taken in order being in any case unity, the complement of any
reference unit is the product of all the others so taken that

the unit times its complement is unity.

To find the complements of quantities other than reference

units the following properties are assumed :

(a) The complement of a product is equal to the product

of the complements of its factors.

(b) The complement of a sum is equal to the sum of the

complements of the terms added together.

(c) The complement of a scalar quantity is the scalar itself.

Considering now the point system in plane space ew e
lt

e
%

with the constant condition e eAe^= 1, the sides of the refer-

ence triangle taken in order are the complements of the oppo-
site vertices, and vice versa.

The complement of a quantity is indicated by a vertical

line, as \p, read, complement of p.

* See Ausdehnungslehre of 1862, Art. 89.
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Thus lA = '/t kA=l(W=s ^i

k = <Vo> k.^=kk) = 'i*

k.= v,i ko^ = l(ka)
= ^-

For ^ |^
= W, = li which agrees with the definition ;

I 'A =k I
e% = ?%'% V, = V Vi = - VA e

o
=

*o> by (a)

and (38) ;

IW= ko ki k = *A 'A Vi = (V/J' = 1 =VA which

agrees with
(*:) ;

e
Q [et

= e e
2
e = o = e \ea = e^e^

Next take any point/, = ^7^, and we have, by (b),

\A=2t\?=W>+W.+^=W,(l
-

j")g
-

J)
= A- (50)

Thus the complement of a point is a line,* which may be

easily constructed by the fourth member of (50), which ex-

presses this line as the product of the points in which it cuts

the sides e e
1
and e e^ of the reference triangle. Comparing

this equation with Ex. 3 in Art. 4, it appears that
\/> 1

above is

3 e
related to the point 2 -. as the line/ /2

of Ex. 3 is to the point

2ne. Hence \p x may be found by constructing this line cor-
1 e

responding to 2
>
as shown in the figure of Ex. 3, Art. 4.

Again, the line \p x may be shown to be the anti-polar of p
with respect to an ellipse of such dimensions, and so placed

upon e e
x

e
9 that, with reference to it, each side of the reference

triangle is the anti-polar of the opposite vertex.* From this

it appears that complementary relations are polar reciprocal

relations. Take any point p2
= 2me, and we have

= 2/m = 2me.2l\e=zpt \pit (51)

*See Hyde's Directional Calculus, Arts. 41-43 and 121-123.
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so that this product is commutative about the complement

sign, and scalar. This is true of all such products when the

quantities on each side of the complement sign are of the same

order in the reference units. Take for instance the product

AAlAA- This is scalar because \pap A
is a point, so that the

whole quantity is equivalent to a triple-point product ;
and we

have/,/), |aa = IAA AA =
I (AA lAA) ==AA iAA> by (a) and

(c). If, however, such a quantity be taken as/^, . \p9
it is neither

scalar nor commutative about the sign |
; for, \p% being a line,

the product is that of two lines, that is, a point, and

AA .
IA= - 1A .AA = -

I (A IAA). (52)

Such products as we have just been considering are called

by Grassmann " inner products,"
* and he regards the sign |

as a multiplication sign for this sort of product. Inasmuch,

however, as these products do not differ in nature from those

heretofore considered, it appears to the author to conduce to

simplicity not to introduce a nomenclature which implies a new

species of multiplication. For instance, p\q will be treated as.

the combinatory product of / into the complement of q, and

not as a different kind of product of p into q.

The term co-product may be applied to such expressions,,

regarded as an abbreviation merely, after the analogy of cosine

for complement of the sine.

Consider next a unit normal vector system,

tion we have

k== .. 1*.= 1(10= -*i*

because i
J \i 1

=
z,t3
= I,

By the defini-

Also, 2, 1

z
a

Next iet

e
i

Mi== z
3 l

z
i-

m
i
t

l + m^i, and e
2
= n

1
i

1 -f n
t
i
2 ;

* Grassmann (1862), Chapter 4.
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then, by (b) and (c),

I

e
x
= m

x |

i
x + m, |

z
2
= m

x t,
- mttx

. (53)

By the figure it is evident that
| e,

is a vector of the same

length as e
x
and perpendicular to it, or, in other words, taking

the complement of a vector in plane space rotates it positively

through 90 .

The co-product e, |

e2
is the area of the parallelogram, two

of whose sides are e, and I e
2
drawn outwards from a point ;

if

e
1

is parallel to |ea ,
this area vanishes, or e

x |e9
= o; but, since

|e2
is perpendicular to e3 , e, must in this case be perpendicular

to e
2 ;

hence the equation
e

1 \e,
=

(54)

is the condition that two vectors e, and e
2
shall be perpendicu-

lar to each other.

The co-product e, | e, ,
which will usually be written e,-, and

called the co-square of e, ,
is the area of a square each of

whose sides has the length Te
x ;

hence

r6l=^K=7^ (55)

Let a
x
and a

a
be the angles between i

x
and e

x
and between

z, and e2 respectively, as in the figure. Then

e
x e,
= m

x
n%
- m.i

n
l
= Te

x
7e

2 sin
(or,
- a

x), (56)

the third member being the ordinary expression for the area of

the parallelogram e,e2
. Also

6, |.6,
= {mx

i
x + m

%i^(n x
i
%
- n

%
i
x)

= m
x
n

x + mjt%
= Te

x
7e

2 cos (a, a
x), (57)

the last member being found as before, remembering that

sin (90 -f or, a
x) cos

( a a
x).

.

^ ^ (57) we let e
2
=

e,, whence n
x

tn
x
and nt

= mt , we
have

Te
x
= V5 = *; + <. (58)

If 7^ = 7e
2
= 1, then w, = cos a

x , tn
%
= sin a

x ,n x
= cos ^

2 ,

2
= sin ar2 ,

and equations (56) and (57) give the ordinary trigo-
nometrical formulas sinfo - a

x)
= sin a

2 cos ax
cos a, sin ^,
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and cos {a, <x
t) == cos a

x
cos or, + sin a

l
sin or, . Squaring and

adding (56) and (57), there results

Te
x
.T*e

2
= e;ie* = (e,e2)'+ fe |

e2)

2
. (59)

Attention is called to the fact, which the student may have

already noticed, that such an equation as AB = AC, in which

AB and AC are combinatory products, does not, in general,

imply that B= C, for the reason that the equation A(BC)0
can usually be satisfied without either factor being itself zero.

Thus pL x
=pL2

means simply that the two quantities which

are equated have the same magnitude and sign, which permits

Z
2
to have an infinity of lengths and positions, when p and L

x

are given. The equation p x p, = p x p % ,
orA(A ~~ A) A anc*

/, being unit points, implies, however, that/2 =A un ^ess A ls

at 00
,
that is, a vector.

Exercise 9. A triangle whose sides are of constant length

moves so that two of its vertices remain on two fixed lines :

find the locus of the other vertex.

Let e e
x
and e

Q e, be the two fixed lines,

and pp'p" the triangle. Let pe be per-

pendicular to p'p", p' e = xe
x
and

/"- e9 = je2 ;
then /' - / = ye,

- xe
x ,

7(je2 .are, )
= c = constant, by the con-

ditions. Also, Tp'e constant =

say, and Tep constant = nc, say. Hence

VG ~~~ Xe
e -p' = Tp'e . U{e - p') = mc . ^^ __ J

= m{ye, - #,),

and similarly p e = n\(ye9
xe

x ).
Therefore

p-e = p = xe
l + m(ye, - xe

x ) + n
\ (ye,

- xe
x),

an equation which, with the condition T(ye, xe
x )
= c, or

j
2
e
2
- 2xye x |

e
2 + x2

e
x

- = c\

determines the locus to be a second-degree curve, which must

in fact be an ellipse, since it can have no points at infinity.

Let us rearrange the equation in p thus :

p = #[(1 m)e x n\ ej +y[mei + n\ ej = xe+ ye\ say,
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so that e = (i m)e1
n

\

e
1
and e' = me2+ n

|

ea ;
then multi-

ply successively into e and e'\ therefore pe = ye'e and

pe' xee\ Substituting these values of x and y in the equa-

tion of condition, we have

el . (pe)
2 + 2e, | ,. pe . pe' + e^pej = c\ee')\

a scalar equation of the second degree in p.

Exercise 10. There is given an irregular polygon of n

sides : show that if forces act at the middle points of these

sides, proportional to them in magnitude, and directed all out-

ward or else all inward, these forces will be in equilibrium.

Let e be a vertex of the polygon, and let 2 v 2e
2 ,

. . . 2en

represent its sides in magnitude and direction. Then the mid-

dle points will be e -{-elf en -\-2ex ~\- e
2 , etc., and, using the

complement in a vector system, we have

2/e = OvK) I *+('+*<+*) I

e2+(^o+2e1+2e2+e3) |

e
9+ . . . ..

+ (*o + 2e
x + . . . + 2e_ 1 +OK

2e+2 + 2
l
2e + 2e, 2e + ... + 2en_1 \en

n
I
n \ 2

2;e-f- 12 ej= o, which was to be proved.

Exercise II. A line passes through a fixed point and cuts

two fixed lines
;
at the points of inter-

section perpendiculars to the fixed lines

are erected
;
find the locus of the inter-

section of these perpendiculars.

Let the fixed lines be e e
l
and e

Q
e
2 ,

and the fixed point e -f- e
3 ;

the moving
line cuts the fixed lines in p' and p

n
'.

at which points perpendiculars are

erected meeting in/.

Let/ e = p,p' e = xe
1 ,p"eQ

= ye2 , Te, = 7e
2 =i;:

then p xe
1 -{-x'\e J

:= ^e2-f-j/ 1

e
2 ,

whence p\e,= x and p\e2
=

y..
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Also, since e
Q -\~ e

% , p' , p" are collinear points,

(. - e*)(ye*
- e

)
= o = *y*fy+y*A + *w"

or, substituting values of ^ and
jj/,

P|<; p|et . 6,6, + p| e
2

. e3e3 + p| e,
. e

3 e,
ss O,

an equation of the second degree in p, and hence representing

a conic.

Prob. 15. If a, b, c are the lengths of the sides of a triangle, prove
the formula a* = b

% + c
1 2bc cos A, by taking vectors e,, e

9 ,
and

2 1 equal to the respective sides.

Prob. 16. If e e
1
and e e* are two unit lines, show that the vec-

tor perpendicular from e on the line (e + #ei)(^ + ^*) is

abe.e* ... x
_ .. ... . . . abee

:
. (be* ae.), of which the length is 7= r-. From

(be^ ae
x )- T(be* ae

x )

this derive the Cartesian expression for the perpendicular from the

origin upon a straight line in oblique coordinates,

ab sin 00 -f- (a
2 + b'

1

2<zb. cos 00)^, go being angle between the axes.

Prob. 17. If three points, me + *,, me
x -+- ne*, me* -f- ne , be

taken on the sides of the reference triangle, then the sides of the

complementary triangle, | (me + ne^), etc., will be respectively paral-

lel to the corresponding sides of the triangle formed by the assumed

points (me, + *
9 )> (me* + neo)> etc -

Art. 9. Equations of Condition, and Formulas.

Several equations of condition are placed here together for

convenient reference : some have been already given ;
others

follow from the results of Arts. 7 and 8. When we have

44 = o, )

(60)

(61)

AA = o
/

r iA +n*P* = > )

the two points coincide ;

AAA = o1

or 2np = o, 1

the three points are collinear
;

e.e,
= O, or n

l
e

l + n,e, = O, (62)

the two vectors are parallel (points at infinity coincide);

*i [. = (63)

or n
x
L

x + n
2L, = o,

the two lines coincide;

444 = o,

3

or 2nL = o,
1 J

the three lines are confluent.
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the two vectors are perpendicular ;

either point lies on the com-

plementary line of the other.

Z,|Z, = o, (64)

either line passes through the

complementary point of the

other.

If we write the equation

P = *\ e i + x
*
ev

x
1
e

1
is the projection of p on ei parallel to e

2 ,
and ;r

2ea
is the

projection of p on e
2 parallel to e

a
. Multiply both sides of the

equation into e2 ;
therefore pe2

= x
x
e

x
e or x

x
= pea

-~
e,e2

.

Similarly, multiplying into e we have pe, = x
2e2

e
lt

or

x
%
= pe, -5- e

2e,, whence

e, .pe2
e
2 .pe,

The two terms of the second member of (65) are therefore

the projections of pon e, parallel to e
a ,
and on e2 parallel to e,,

respectively.*

Let e, and e
2
be unit normal vectors, say, 1 and \i\ then (65)

becomes

p = i.p\i \i. pi= i.p\i+ip.\i; (66)

or, if i
x
and z

a be used instead of 1 and
|
z,

P= VPK + Z
2 -Plv (67)

Again, in (65) let p = e3 ,
clear of fractions, and transpose ;

therefore

e,e2
. e

3 + e
2
e

3
. e, + e

z e, . e
2
= o, (68)

a symmetrical relation between any three directions in plane

space. Let 7e, = 7e
2
= 7e

3
= 1, and multiply (68) into |e3 ,

thus e^ + e
2
e

3 . e, | e, + e
3 e, . e2

1

e
3
= o, (69)

which is equivalent to

sin (a /3)
= sin a cos /3 cos a sin /?,

the upper or lower sign corresponding to the case when
e\, is

* Grassmann (1844), Chapter 5 (1862), Art. 129. Hyde's Directional Calcu-

lus, Arts. 46 and 47.
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/IAU

(70

(72)

(73)

Art. 9.]

between e
1
and e2 ,

or outside, respectively. Writing in (69) i ea

instead of e
2 ,
we have

eje2
e

2 |e 3
.e

3 |e 1 + e
3
e

1
.e2e3

= 0, (70)

which gives the cos (a /?). These formulas being for any
three directions in plane space, are independent of the magni-

tude of the angles involved.

There is given below a set of formulas for points and lines,

arranged in complementary pairs, and all placed together for

convenient reference, the derivation of them following after.

/=(AAA)"
1

[A -/AA + A -/AA +A -/AAL
Z=(AAA)-'[4 . LL

X
L

% + L
x

. LL,L + A . ZZ.ZJ

/^(AAArClAA-AA + IAA-/IA + I AA-A
z^ZAATUAA-^iA+IAA.^IA+IAz;

AA-AA = - A AAA +A -AAA
= A AAA A AAA.

44 . 44 = - A . 444 + 4 . 444
4- AAA- L4 .Lt

L
tLt J

A 4 1 if,

A 4W
Jf; AW,
^ AW '

_ AW Al
AW Al

?i A I ft

r, a I?.

', Al?.

The complementary formula to (77) is not given, but may
be obtained by putting Z's and M's for /'s and ^'s.

Derivation of Equations (71) (77). Equation (71). Write

p = x p -\- x 1p i -\-x%pv and multiply this equation by p lpi \

then AA/ = *oAAA> or * = /AA ^ AAA-

Multiplying similarly by p p2 and by p pv we find

*, = /AA -*-/.AA and -^ = /AA -5-AAA- The substitu-

AA- |*3=
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tion of these values gives the first of (71), and the second is

similarly obtained or may be found by simply putting Z's or

p's in the first.

Equation (72). Write/ = x \p xp% + x
x \ p,p + x

% \ pop iy
and

multiply into \po ; thus/|/ = %*P*P\Pv Find in the same way
values of x

x
and x% ,

and substitute.

Equation (73). Write p x p2 .psp x
-~ xpy + ypv and multiply

by PA* therefore pp% .p,p^.p*p, = Xpp%p or, by Eq. (38),

A/A AAA = *PP*Pi = *P%PP or
>
* =~ PiPtPv Multiply-

ing by pp x
we find _y =AAA> anc* on substituting obtain the

first of (73). For the second put px'p% .p9p A
= *ps -\-ypv and

proceed in a similar way.

Equation (74). In the first of (73) put p%pK
= \q x

.

Equation (75). In the fourth of (73) put

AA =A A = kit A =
|ft

Equation (76). Multiply (75) by/,.

Equation (77). In the first of (72) put , for/, and multiply

byAAA-ftft ;
then

AAA ftftft = ftft IAA ft IA+ ftft lAA ft |A+ ftft |AA ft lA

=A ft-
Alft Alft

Alft Alft
+Alft- + Alft-

Alft Afft

Alft A'ft

Alft A'ftl

Alft A'ftl

by (76), which is equivalent to the third order determinant of

equation (77)*

Exercise 12. To show the product of two determinants as

a determinant of the same order.

2

Let p = 2le, p x
= 2me, p9

= 2ne,q = 2\e, q=2fxe, q,=2re;

then p p x p, = [/ m
x1 J, ? ()^2

= [A , // vj ; also

A [ft
= /

o
A

o+ '1*1 + l*K> A I ft
= wo* + *!*, + *** etc. Sub-

stituting these values in (77), we have the required result. A
solution may also be obtained directly without the use of (77).

2

Let the q's be as above, but writep Q
= 2lq,p x

= 2mq,p2
= 2nq.

Then

pop xp,=2fq.2mq.27tq=[/ , ,]?.?,?,=[/ J[A ju fj.
* Grassmann (1862), Art. 173.
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Also /, = l^\e+ l
t2fie + l^ve

with similar values (or p t and/ a ,
which on being substituted in

AAA glvQ tne resu lt. Equation (77), however, exhibits the

product in a very compact, symmetrical, and easily remembered

form.*

Exercise 13. Show that the sidesAA AA> P%P% f tne tr*-

angle p xp^p%
cut the corresponding sides \p3 , \p x , \p2 of the com-

plementary triangle in three collinear points.

The three points of intersection are, using (74),

AA-lA=-A-AlA+A-AlA.AA-lA = -A-AlA+A.AiA.
AA -!A = A-AlA+A-AlA> of which the sum is zero,

showing that the points are collinear. It may be shown in

the same way that the lines joining corresponding vertices are

confluent.

Exercise 14. If the sides of a triangle pass through three

fixed points, and two of the vertices

slide on fixed lines, find the locus of /\
/ \

L*

the other vertex. ,/ \p/ \

Let the fixed points and lines be %
" "

7>^r>'p\ \

p iy p ps , L iy
L and /, /, /" the _.-""/ M

vertices of the triangle, as in the 2 \
figure. Then p'pzp" = o; p' coin-

cides with pp^.L^ and p" with pp^. Z2 ;
hence substituting

{pp x
. L^)pz(L^. p2p) = o, the equation of the locus, which, being

of the second degree in/, is that of a conic.

Prob. 18. Show that if the three fixed points of the last exercise

are collinear, then the locus of p breaks up into two straight lines.

Use equation (73).

Prob. 19. If the vertices of a triangle slide on three fixed lines,

and two of the sides pass through fixed points, find the envelope of

the other side. (This statement is reciprocally related to that of

Exercise 14, that is, lines and points are replaced by points and

* These methods may be applied to determinants of any order by using a

space of corresponding order.
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lines respectively, and the resulting equation will be an equation of

the second order in Z, a variable line.)

Prob. 20. Show that if the three fixed lines of Problem 19 are

confluent, then the envelope of L reduces to two points and the line

joining them.

Art. 10. Stereometric Products.

The product of two points in solid space is the same as in

plane space. See Art. 7.

Product of Three Points. Any three points determine a

plane, and also, as in Art. 7, an area
;
henceAAA is a plane-sect

or a portion of the plane fixed by the three points whose

area is double that of the triangle AAA- It may be shown, in

the manner used in Art. 7 for the sect, that no plane-sect, not

in this plane, can be equal to AAA* and that any plane-sect in

this plane having the same area and sign will be equal toAAA**'
Of courseAAA is not now scalar.

Product of Four Points. Any four non-coplanar points

determine a tetrahedron, say
2^ ^p5

' J

y x\ AAAA- anc- s *x times the vol-

_ \ _\/
x\ \x

ume of this tetrahedron is
*

\ 7s^ S* ta^en f r the value of the

\/ product, because this is the
-

4 volume of the parallelepiped

generated by the productAAA i.e. the parallelogramA>A
when it moves parallel to its initial position from/, to pv Let

Pi A = e, A A = e', A A = e
" then

AAAA = AAA*" =AA*V = A<*V'. (78)333 3

If/, c2^,A = <27* A = 2me,pt
= 2ne, then000

AAAA = 2&e2le2me2ne = [kot /,, m ,] . v/A S (79)

from which it appears that any two quadruple products of

points differ from each other only by a scalar factor, that is, they
differ only in magnitude, or sign, or both; hence such products
are themselves scalar.f If AAAA = o, the volume of the

tetrahedron vanishes, so that the four points are coplanar.
* Grassmann (1862), Art. 255. f Grassmann (1862), Art. 263.
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Product of Two Vectors. The two vectors determine an

area as in Art. 7, but they also determine now a plane direc-

tion, so that the product e^e., is a plane-vector, and is not scalar

as in plane space. Also, e^ differs from px x
<G%
now just as e

differs from pe ; namely, e^ has a definite area and plane

direction, that is, toward a certain line at infinity, while p x
e

x e^ is

fixed in position by passing through/,. Equation (37) there-

fore does not hold in solid space.

Product of Three Vectors. Three vectors determine a

parallelepiped as in the figure above, and ee'e" is therefore

the volume of this parallelepiped. Any other triple vector

product can differ from this only in magnitude and sign. For

let e
l

.

l
e

i
be such a product, and write33 3

e = x
1
e

1 + ^
2e2+ x

%
e

%
= 2xe, e

f = 2ye, e" = 2ze
;
then

*,



= LP. ]
<83>
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Product of a Sect and a Plane-Sect. Let them be L and

P, and let A be their common point; take A, A*A so tnat

Z=AA an<^ PPaPtPr L and P evidently determine the

point A' and also the parallelepiped of which one edge is L
and one face is P, so that the product should be made up of

these two factors. Hence we write

LP =AA AAA = PPJJ* . A*>

PL =P.PJ, -Pop! = AAAA -A
If L is parallel to P, p is at infinity, and, replacing it by e,

{83) becomes
PL = LP= eA eAA = eAAA ' e ' ^

Product of Two Plane-Sects. Let them be P
x
and P and

let L be their intersection, whileA andA are such points that

P
x
= Lp x

and P, = Lp2 \ then P
x
and P

9 determine the line L
and also a parallelepiped of which they are two adjacent faces,

and

Pf^Lp^.Lp^Lp^.L^-Pf, (85)

If P, and Pa are parallel, L is at infinity, and is equivalent

to a plane-vector, say to t] ; hence, substituting in (84),

PA = >ZA ?A = ?AA '/
= - ^- (86)

Product of Three Plane-Sects. By (85) and (83) this must

be the square of a volume times the common point of the

three planes ; or, if p , A> A A be taken in such manner that

A = AAA, ^
2 =AAA. ^3 =AAA then

P,/^, = 023 . 031 . 012 = 023 . 0123 . 01 = (AAAA)
3

-A ; (87)

the suffixes being used instead of the corresponding points.

IfA be at infinity, the three planes are parallel to a single line,

and may be written P
x

n
x ep.1p% , etc., and then treated as

above.

Product of Four Plane-Sects.* Let the planes be P . . . P
a ,

and letA -A be the four common points of the planes taken

three by three. n . . . n
% may be so taken that P = # AAA>

etc, ;
then

P P
l
Pi
P

t
= njix

n
%
n

% * 123. 230. 301 .012

= *.,*9 ,(AAAA)' (88)
* Grassmann (1862), Art. 300.
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Product of Two Plane-Vectors. Let tf l
and

?;2
be two plane-

vectors or lines at infinity ; let e be parallel to each of them,,

and e, and e2
so taken that

17,
= ee lf ?;3

= ee
2 ,
then

ViV* = ee
i

6e
2
= ,,. 6 as

^ffc, (89)

because 7, and
7/a

determine a common direction e, and a paral-

lelepiped of which three conterminous edges are equal to

e, e e
2 , respectively.

Product of Three Plane-Vectors. Take elt e
2 ,

e
3
so that

rf^VtVt
= * e

2
e

3
. 636, . ,, = w(e 1

e
2
e

3)

2
. (90)

The directions e, . . . e
3

are common to the plane-vectors

77,
. . .

?/,
taken two by two.

Several conditions are given here together which follow

from the results of this article.

AA = o,

Two points coincide.

AAA = o,

Three points collinear.

AAAA = AA-AA
= L,L2

= o,

Four points coplanar ;
two

lines intersect.

e,e2
= o,

Vectors parallel.

6^6, = o,

Three vectors parallel to

one plane.

Sum of Two Planes.

sect in their common line, and take p l and/, so that P
l
= Lplf

P, = Lp,\ then

/>+/>= Z(A + A) = *M (96)

p being the mean ofA and p9
. Also

P,-P, = L(A -J>,); (97)

whence the sum and difference are the diagonal plane through

Z, and a plane through L parallel to the diagonal plane which

is itself parallel to L, of the parallelepiped determined by Px

P,P, = o,
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and Pa. If TP
l
= TP9i

P
x P, will evidently be the two

bisecting planes of the angle between them. The bisecting

planes may also be written

-^Yp- or P,TP,P,TPV (98)

If the two planes are parallel, let
tf

be a plane-vector

parallel to each of them, that is, their common line at infinity,

and let/, and /2
be points in the respective planes; then we

may write P
1

= n^ptf, P2

~ n
2pjj, whence

P* + P* = KA + A)* = (a + nS~Pv- (99)

If n
x -f- n^ = o, this becomes

^, + ^, = (/>, -/,)?> (100)

the product of a vector into a plane-vector and therefore a

scalar, by (80).

Two plane-vectors may be added similarly, since they will

have a common direction, namely, that of the vector parallel

to both of them.

Exercise 15. If two tetrahedra e e
1e^es

and e^e^e^e^ are so

situated that the right lines through the pairs of corresponding

vertices all meet in one point, then will the corresponding faces

cut each other in four coplanar lines.

The given conditions are equivalent to e e
'

. e
te/ = o

= ****' V/ = V' Vt' = **'*' - **i = Vi'-V,' = e/* '/,'

Two of the intersecting lines of faces are e^e x e^ . eje^'cj and

*
t*ie% *{*%*%* an(^' ^ these intersect, we must accordingly have,

by (93), 012 . 0V2' . 123 . 1V3' = o = 012 . 123 . o'i'2' . 1V3'
= 0123. o'V^i' . i2i

/
2

/

,
the last factor of which is equivalent

to the fourth condition above, since quadruple-point products

in solid space are associative. Similarly all the other pairs

of intersections may be treated.

Exercise 16. The twelve bisecting planes of the diedral

angles of a tetrahedron fix eight points, the centers of the

inscribed and escribed spheres, through which they pass six

by six.

The sum and difference of two unit planes are their two
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bisecting planes, by (97). Let the tetrahedron be e9ex
e
%
e
%i
and

let the double areas of its faces be A = Te
x
e
2
e
3 , etc.; then a

pair of bisecting planes will be
-^-

3
" or e%ex{A %e% A

s
e
%).

The pair through the opposite edge will be e
3
e

9(A e
Q A^^).

If there be a point through which the six internal bisecting

planes pass, it must be on the intersection of these two planes

taken with the upper signs, and we infer by symmetry that it

3

must be the point 2Ae. Another internal bisecting plane is

e
%
e
n(A l

e
l -f- A %

e
9),

which gives zero when multiplied into 2Ae,
as do also the other three.

To obtain all the points we have only to use the double

signs, so that they are A e A
xe^ A^e^ A

3
er This

gives eight cases, namely,

++++ -+++
+ + + - + +
+ + -+ + +

The eight apparent cases that would arise by changing all the

signs are included in these because the points must be essen-

tially positive. Moreover, no positive point could have three

negative signs, because the sum of any three faces of the tetra-

hedron must be greater than the fourth face. It will be found

on trial that six of the bisecting planes will pass through

2( Ae) with any one of the above arrangements of sign.

Prob. 21. The twelve points in which the edges of a tetrahedron

are cut by the bisecting planes of the opposite diedral angles fix

eight planes, each of which passes through six of them.

Prob. 22. The centroid of the faces of a tetrahedron coincides

with the center of the sphere inscribed within the tetrahedron

whose vertices are the centroids of the respective faces of the first

tetrahedron.

Prob. 23. If any plane be passed through the middle points of

two opposite edges of a tetrahedron, it will divide the volume of the

tetrahedron into two equal parts.
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Art. 11. The Complement in Solid Space.

According to the definitions of Art. 8 the complementary
relations in a unit normal vector system are as follows :

l*i
=

*.*. I v. = 1(10= ,

k = Mi lv.= 1(10 = *. h
k = f

i. Im.= 1(10= z
3

3

Let e = J/z ; then

1

6 = AVs + /.., + hh\ = j&h
- W(4 - 4A (I02>

so that
|

e is a plane-vector. The figure, which is drawn in

isometric projection, shows
*^&

hh

^U

S^A'l

that the two vectors /jZ 2 lj x

and l
x
i
s

/
3 z,,

whose prod-

uct is /, .
|
e, are both perpen-

dicular to e
;
for the first is

perpendicular to /,*, -|- /
2
z
a ,

which is the orthogonal pro-

jection of eupon z
x
z

ft ,and to

z
3 ,
and therefore is also per-

pendicular to e, while the

second is perpendicular to /
1
i
1 + h l

*
anc* to h> anc* therefore

to e. Hence
|

e is a plane-vector perpendicular to e
; and, since

|(|e)= e, the converse is also true, i.e. the complement of a

plane-vector is a line-vector normal to it.

The figure shows that e is equal to the vector diagonal of

the rectangular parallelepiped whose edges have the lengths

/,, /3 ,
/
s ,
hence

Te = V'lJTVTV. (103)

Multiply equation (102) by e; therefore

e\e = (/,, + l,t, + /,, 3)(/,M, + Wi + '.'.0

= /,+/, + /,= re =6, (104)

so that the co-square of a vector is equal to the square of its

tensor. The product e|e is that of a vector e into a plane-

vector perpendicular to it, as has just been shown
;

it is there-
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fore a volume which is equivalent to Te . T\e; hence, by (104),

e]e= Te . T\ e = T*e> or Te = T\e. Hence, the complement
of a vector in solid space is a plane-vector perpendicular to it

and having the same tensor, or numerical measure of magni-

tude.*
3

Let a second vector be e' =2mi
;
then

e
I

e' = l
x
m

x + /,, + l
3
m

3
=

e'\e. (105)

Now e|e', being the product of e into the plane-vector |e',

is the volume of the parallelepiped in the fig- w|

ure, that is, TeTe' sin (angle between e and |e')

= TeTe' cos f. Hence

e\e'
= e'\e=fi

m
1+li

m
2+Iz

m
3=TeTe' cos f. (106)

If 7e = Te' = I, /, ... /
t, *,.". . ?/z

3 are di-

rection cosines, and (105) gives a proof of the

formula for the cosine of the angle between

two lines in terms of the direction cosines of the lines. We
have also in this case

ee = (/,,
- ljn x ) |

z
3 -f- (Jtmt

- /
a
m

2) |

i
x + (/,, - l

x
m

% ) \

i
%t and,

taking the co-square,

{eeJ-= (sin f^=(/,,-W+fe-W+W^-W. (107)

If e|e'=o, (108)

e is parallel to the plane-vector perpendicular to e', that is, c

is perpendicular to e', as is also shown by (106).

Let
rj
=

I
e, rf = |

e'
; then

I7|V= |e.e' = e'|
e = e\e'

= TeTe f

cos f
=

71?7Y cos
J, (109)

and ^l^^o (no)

is the condition of perpendicularity of two plane-vectors. Also

either

e\rf = O, or 1/ |

e = O, (
II]t )

is the condition that a vector shall be perpendicular to a plane-

vector, for the first means that e is parallel to a vector which is

* Grassmann (1862), Art. 335.
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perpendicular to 7', and the second that rf is parallel to a plane-

vector which is perpendicular to e.

Equations (71) (77) of Art. 9 become stereometric vector

formulae if elt
e
t , etc., be substituted iov p x , p^ etc., and

i^, //,,

etc., for L
x , Z.,, etc. For instance, (76) gives the vector formulas

vAVx Vx\V%

V*\Vi vM
For lack of space no treatment of the complement in a

point system in solid space is given.

Exercise 17. To prove the formulas of spherical trigo-

nometry cos a == cos b cos c -f- sin b sin c cos ^2, and

sin a _ sin _ sin

sin ^4 sin B sin (7

'

Take three unit vectors e,, e
a , es parallel to the radii to the

vertices of the spherical triangle, then #= (angle bet. e
2
and e

3),

A (angle bet. 6,6, and e^), etc. In eq. (112) put e,6, for e/e,';

hence 6,6, | efy = sin sin c cos ^ = e?
. e

2
1

e
8

e
x |

e
3

. e, |

e
3

= cos # cos b cos <:.

Again,

T{e x ^
. e

x e,)
= 2^6,6,6, . e

x)
= Te

x e,e3
= r(e3

e
3

. e,6,)= T(es
e

i
. 6

8
e
a);

or sin b sin c sin ^4 = sin a sin sin B = sin # sin b sin 7,

whence we have the second result by dividing by sin a sin b sin c.

Exercise 18. Show that in a spherical triangle taken as

in Exercise 17, cos - = = '-r^ f-^, whence derive
2. 7\(/ 1

e9 + Ue
x
e

3)

.. (5 #)
the ordinary value

/sin 5 sin

y sin sin <:

Expanding, the numerator becomes 1 -(- C/6,6,1 #6,6,, and

the denominator 4/2(1 + Ue^] Ue
x
e

2 ).
Also there is obtained

E/e.eJ E/e.e,,
= -f

1 ^'^-. The remainder is left to the stu-

76,6,76,6,

dent.

Prob. 24. If 6,, e
2 ,

e
3 ,

drawn outward from a point, are taken

as three edges of a tetrahedron, show that the six planes perpen-
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dicular to the edges at their middle points all pass through the end

of the vector p = ~ r ( |

e
2
e

3
. 6*+ |

e
3
e

1
. ej

1 +
|

e
x t

. e
3

?
). (Sug-

2e
i
fc

a
fc

s

gestion. We must have (p ie x ) 1 6,
= o, with two other similar

expressions.)

Prob. 25. Show that e, |

ee' and ee'.
|

e are three mutually per-

pendicular vectors, no matter what the directions of e and e'

may be.

Prob. 26. Let xt
e
2 ,

e
3
be taken as in Prob. 24 ;

let A Q be the

area of the face of the tetrahedron formed by joining the ends of

these vectors, and 2A
X

= Te
a
e

x , etc.; also
X

= Angle between e
x
e

q

and e^g, etc.: then show that we have the relation, analogous to

that of Prob. 15, Art. 8,

A '= A?+A?+A*- 2A
2A, cos 6- 2A

3
A

X
cos 6

t
- %A

X
A

%
cos 6V

If 6
X

. . . 6
3
are right angles, this becomes the space-analog of the

proposition regarding the hypotenuse and sides of a right-angled

triangle. (Suggestion. 2A, = Z(e2
e

x )(ea e,).)

Prob. 27. There are given three non-coplanar lines e
i
e

x ,
e e^ ,

*r e
8 ; planes cut these lines at right angles, the sum of the squares of

their distances from e being constant. Show that the locus of the

common point of these three planes is (p\ e
1 )

a

+(/o| e
2)

3

-f (p| e
3)

8
=<r

3

,

if Te
x

= Te
%
= re

3
= 1.

Art. 12. Addition of Sects in Solid Space.

Two lines in solid space will not in general intersect, so that

their sum will not be, as in eq. (43), a definite line. For let

p 1
e

l and/2
e

2
be any two sects: then

A e
i + P& = p,e x +/>,, + e (e x + 6.)

- e (e x + e.)

-
'.(e, + e,) + (p x

- e )e x + (/,
- * )e2 ;

that is, the sum is a sect passing through an arbitrary point e ,

and a plane-vector, the sum of the two in the equation. The
sum cannot be a single sect unless the two are coplanar ;

for let

A =A+ xe
i -\-f * + *e

t*
e

s being a vector not parallel to e^, ;

hence p x
e

x + p%e%
= p x

e
x + (/, + xe

x +ye2 + ze
9)e3

= A (*, + e
3 ) + *6, (e, -f e

2) + *e
3
e

2

= (A + *0 (, + e.) + ^e
3
e

2 ;

and this cannot reduce to a single sect unless z = o, that is, un-

less p x
e

x and/2
e

2 are coplanar. Since a plane-vector is a line at
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oo
,
the sum of two lines may always be presented as the sum;

of a finite line and a line at oo .

If the sum of any two sects is equal to the sum of any
other two, their products will also be equal, that is, the two-

pairs will determine tetrahedra of equal volumes. For let

L
x -f- Lt

=s L%+ L\ ;
then squaring we have L

XL^ = L
3
L

4 ,
since

L,L t o, etc.

An infinite number of pairs of sects can be found such that

the sum of each pair is equal to the sum of any given pair; for

let a given pair be p 1
e

1 +A t
and take a new pair

(*iA + *A)(*A + *,<0 -t- 0\A +J'*A)(*\e i + v
%
e%)

= te, +jw}?. + (*.. +y^p,e, +
(xt

u
t +y1

v
t)pl

e
t + (xjix +y,z\)p,e l

..

This will be equal to the given pair if we have

^x+^Vi = *.* +.JW =i, and x
x
u

% +yx
v

t
= x

t
u

x +y%vt
=

o).

Since there are eight arbitrary quantities with only four

equations of condition, the desired result can evidently be ac~

complished in an infinite number of ways.

Let p i
e

1 ,/a
e

2
. . . . pnen be n sects, and let 5 be their sum,

and e any point, then

5 = 2j>e = e,2e
-

e,2e + 2pe = e,2e + 2{p - e.)e, (u 3>
1

the sum of a sect and a plane-vector as before.

If 2(p e )e is parallel to 2e it may be written as the prod-

uct of some vector e into ^e, that is, e'^e, when the sum be-

comes S = e^e -f- e'^Ee = (e -\- e')^e, a sect, because e -f- e is.

a point. In no other case does 5 reduce to a single sect. If

^e = o. 5" becomes a plane-vector. Of the two parts compos-

ing S, the sect will be unchanged in magnitude and direction if

e be moved to a new position, while the plane-vector will in

general be altered. It is proposed to show that a point q may
be substituted for e such that the plane-vector will be perpen-

dicular to ^e. Writing

S = q2e-(q- e )2e+ 2<J>
- e )e,

and, for brevity, putting q e =
/>, 2e = a, 2(p e )e = \/3r

so that

S = ga pa+ \fi, (114)



Art. 12.]
addition of sects in solid space. 421

-we must have for perpendicularity, by (in),

( | ft pa) |

a = O =
|
fta pa .

|
a,

or pa .\a=a.p\a p. a- = \fta. ( XI 5)

The second member is obtained from the first by substitut-

ing in eq. (74) p for p x
and a for />3 and q iy in accordance with the

statement at the end of Art. II. If in (1 1 5) we make p \

a = o,

p will be the vector from e to q taken perpendicularly to a,

say
p 1

= \aft-^-a
2

-=q i
-e . (116)

Since a and ft are known, the required point has been

found. Multiply (115) by a; then, using (75),

ap . a2 = pa . a2
- = a

| ft
a \ft.a- |

a . a
| ft,

whence, substituting in (114),

S = , + 4g.\a
= ,* +

2<*-**
.\2<. (lift

This may be called the normal form of S*

The sects of this article represent completely the geometric

properties of forces, hence all that has been shown applies

immediately to a system of forces in solid space. We have

only to substitute the words force and couple for sect and plane-

vector. The resultant action of any system of forces is 5,

called by Ball in his Theory of Screws " a wrench." The con-

dition for equilibrium is 5 = o, which gives at once

^e = o and 2(p - e )e = o
; (118)

since otherwise we must have e^e = ^{p e )e, which is

an impossibility. The line q^e is the central axis of the sys-

tem of forces 5.

Lack of space forbids a further development of the subject,

but what has been given in this article will indicate the perfect

adaptability of this method to the requirements of mechanics.

Exercise 19. Reduce p x
e

x + Ae
2
= 5 to its normal form.

^ =
e,(e l + e

a ) + (p t

- e )e, + {pt
- e )e,. For convenience

suppose p x
and p%

to be taken at the ends of the common per-

*Grassmann (1862), Art. 346.
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pendicular on/,6, and/s
e
2 ,

and moreover let ^ i(A +/)
/, <? = t = (p, e,) ;

then z
| e,
=

r|e,
= o. Accordingly

5 = e (e, + e.) +<e, - e,)
= g(e t+e,)+

fei+&gSLpS>
. ,^+^y

By (i5) * - , = -1^ = - <* J -lfc+ >

= ,.(e
- 6,)|(6i J e,*-e,

(e,+ ej*
,Dy ^'

(6,+ ,)"
Hence the normal form of 5 is

Exercise 20. Forces are represented by the six edges of a

tetrahedron e elf e9e% ,
e

Q
e
3 , **?,, e

t
elt e

x
e% \

find the S, reduce to

normal form, and consider the special case when three diedral

angles are right angles. 5 = e (e t + e
a + e

t ) + etet + e%et + e
xe+

= ^( l+et+ t)+(et eXet
e

l)= ^(e 1+e3+e3)+ (e2
-e

1)(e3
-e

1)

= eM. + e
* + O + e

2
e

3 + e
3
e

1 + e.e, ,
in which e,

= e
x

*
,.

etc. Hence

For the rectangular tetrahedron let e,
= ai

x , e,
=

bi^ ,,

e
3
=

s , z, , it ,
z
3 being unit normal vectors. Then we find

+^qiy i

g
-l(gg + ^+ g0-

Exercise 21. A pole 50 feet high stands on the ground and

is held erect by three guy-ropes symmetrically arranged about

it, attached to its top and to pegs in the ground 50 feet from

the pole. The wind blows against the pole with a pressure of

50 pounds in the direction e pr
when e is at the bottom of
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the pole, and p divides the distance between two of the pegs

in the ratio : find the tension on the guys and the pressure

on the ground.

Evidently only two of the guys will be in tension
; let their

pegs be at e
x
and e

3 ,
and let e

%
be at the top of the pole, and w

ftl
|

tl

the weight of the pole. Then p
l

t
*. and the equation

of equilibrium is

^ (*.+')(' /)
|

2St(P ~~ e )
|

(x+w)e9
e
% ye% e,

,
ze,ea

5'
2l\e.-p)

^
IX'.-p)*' Tej% +Tes+Te%er-

Tes%
= 50, rVl = Te

%
e
t
= 5o l/i, T(p

-
t.)
=
t{^^> -e)

Jm{e,-e,)+n{e,-e ) \ _ 50
,= 7\ ;

J
j

Time -\-neJ, if e
1
=[/(e

1
e

it)

and e
a
= U(e%

e
);

then T(/ eQ)
= j Vm* -\- n* mn,

because e,- = c,
1 = I, and e,|e3

= cos 120 = \. Hence the

equation of equilibrium becomes

v/# + w r 2 V2

Multiply successively by e
t
elf e etJ and ^,, and we obtain

x -\-w _ y z 25

m -j-
w 4^2 n V2 Vm* -\- n* mn

y and z being the tensions, and x -f- w the upward pressure.

Prob. 28. Three equal poles are set up so as to form a tripod,

and are mutually perpendicular; a weight w hangs upon a rope
which passes over a pulley at the top of the tripod, and thence

down under a pulley at the ground at a point p ^le, in which
j

e
x

. . . es
are at the feet of the poles, and 2/ = i

;
if the rope is pulled
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so as to raise w, show that the pressures on the poles, supposir- the

pulleys frictionless, are

Prob. 29. Six equal forces act along six successive edges of a

cube which do not meet a given diagonal; show that if the edges of

the cube be parallel to z,,
z
2 ,

z
3 ,

and F be the magnitude of each

force, then S= 2F\ (i 1 + z
a + z

3 ),
if the diagonal taken be parallel

to z, + z
2 + z

s
.

Prob. 30. Three forces whose magnitudes are 1, 2, and 3 act

along three successive non-coplanar edges of a cube; show that the

normal form of 6* is

S= ('.+tf, + i,-A.)(, + ,+ 3',)+*l(',+",+ 3.)-

Prob. 31. Forces act at the centroids of the faces of a tetrahedron,

perpendicular and proportional to the faces on which they act, and

all directed inwards, or else all outwards; show that they are in

equilibrium.
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Chapter IX.

VECTOR ANALYSIS AND QUATERNIONS.

By Alexander Macfarlane,
Lecturer in Electrical Engineering in Lehigh University.

Art. 1. Introduction.

By
" Vector Analysis

"
is meant a space analysis in which

the vector is the fundamental idea; by
"
Quaternions" is meant

a space-analysis in which the quaternion is the fundamental

idea. They are in truth complementary parts of one whole;

and in this chapter they will be treated as such, and developed

so as to harmonize with one another and with the Cartesian

Analysis.* The subject to be treated is the analysis of quanti-

ties in space, whether they are vector in nature, or quaternion

in nature, or of a still different nature, or are of such a kind that

they can be adequately represented by space quantities.

Every proposition about quantities in space ought to re-

main true when restricted to a plane ; just as propositions

about quantities in a plane remain true when restricted to a

straight line. Hence in the following articles the ascent to the

algebra of space is made through the intermediate algebra of

the plane. Arts. 2-4 treat of the more restricted analysis,

while Arts. 5-10 treat of the general analysis.

This space analysis is a universal Cartesian analysis, in the

same manner as algebra is a universal arithmetic. By provid-

ing an explicit notation for directed quantities, it enables their

general properties to be investigated independently of any

particular system of coordinates, whether rectangular, cylin-

drical, or polar. It also has this advantage that it can express

*For a discussion of the relation of Vector Analysis to Quaternions, se
Nature, 189T-1893.
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the directed quantity by a linear function of the coordinates,

instead of in a roundabout way by means of a quadratic func-

tion.

The different views of this extension of analysis which have

been held by independent writers are briefly indicated by the

titles of their works :

Argand, Essai sur une maniere de representer les quantites

imaginaires dans les constructions geometriques, 1806.

Warren, Treatise on the geometrical representation of the square

roots of negative quantities, 1828.

Moebius, Der barycentrische Calcul, 1827.

Bellavitis, Calcolo delle Equipollenze, 1835.

Grassmann, Die lineale Ausdehnungslehre, 1844.

De Morgan, Trigonometry and Double Algebra, 1849.

O'Brien, Symbolic Forms derived from the conception of the

translation of a directed magnitude. Philosophical Transactions,

1851.

Hamilton, Lectures on Quaternions, 1853, and Elements of

Quaternions, 1866.

Tait, Elementary Treatise on Quaternions, 1867.

Hankel, Vorlesungen iiber die complexen Zahlen und ihre

Functionen, 1867.

Schlegel, System der Raumlehre, 1872.

Houel, Theorie des quantites complexes, 1874.

Gibbs, Elements of Vector Analysis, 1881-4.

Peano, Calcolo geometrico, 1888.

Hyde, The Directional Calculus, 1890.

Heaviside, Vector Analysis, in
"
Reprint of Electrical Papers,'"

1885-92.

Macfarlane, Principles of the Algebra of Physics, 1891. Papers

on Space Analysis, 1891-3.

An excellent synopsis is given by Hagen in the second volume

of his
"
Synopsis der hoheren Mathematik."

Art. 2. Addition of Coplanar Vectors.

By a "vector" is meant a quantity which has magnitude
and direction. It is graphically represented by a line whose



ART. 2.] ADDITION OF COPLANAR VECTORS. 42?

length represents the magnitude on some convenient scale, and

whose direction coincides with or represents the direction of

the vector. Though a vector is represented by a line, its

physical dimensions may be different from that of a line. Ex-

amples are a linear velocity which is of one dimension in

length, a directed area which is of two dimensions in length,,

an axis which is of no dimensions in length.

A vector will be denoted by a capital italic lejter, as B* its

magnitude by a small italic letter, as b, and its direction by a small

Greek letter, as /3. For example, B = bfi, R = rp. Sometimes

it is necessary to introduce a dot or a mark / to separate

the specification of the direction from the expression for the

magnitude ;f but in such simple expressions as the above, the

difference is sufficiently indicated by the difference of type. A
system of three mutually rectangular axes will be indicated,,

as usual, by the letters i,j, k.

The analysis of a vector here supposed is that into magni-
tude and direction. According to Hamilton and Tait and

other writers on Quaternions, the vector is analyzed into tensor

jUldjnyfcyectfir, which means that the tensor is a mere ratio

destitute of dimensions, while the unit-vector is the physical

magnitude. But it will be found that the analysis into magni-

tude and direction is much more in accord with physical ideas,,

and explains readily many things which are difficult to explain

by the other analysis.

A vector quantity may be such that its components have a

common point of application and are applied simultaneously;

or it may be such that its components are applied in succes-

sion, each component starting from the end of its predecessor.

An example of the former is found in two forces applied simul-

taneously at the same point, and an example of the latter in

*This notation is found convenient by electrical writers in order to harmo-

nize with the Hospitalier system of symbols and abbreviations.

\ The dot was used for this purpose in the author's Note on Plane Algebra,

1883; Kennelly has since used Z for the same purpose in his electrical papers
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two rectilinear displacements made in succession to one an-

other.

Composition of Components having a common Point of

Application. Let OA and OB represent two vectors of the

same kind simultaneously applied at the point O. Draw BC

c parallel to OA, and AC parallel to OB, and

join OC. The diagonal OC represents in mag-
nitude and direction and point of application

o A the resultant of OA and OB. This principle

was discovered with reference to force, but it applies to any

vector quantity coming under the above conditions.

Take the direction of OA for the initial direction
;
the di-

rection of any other vector will be sufficiently denoted by the

angle round which the initial direction has to be turned in

order to coincide with it. Thus OA may be denoted by

/,/0, OB by /2//V OC byf/J. From the geometry of the fig-

ure it follows that

/*=/,' +/'+ ,/, COS d.

and tan 6
/, +/, cos ;

hence OC = // +/ + 2/,/, cos
, /tan^ ^"^ .

Example. Let the forces applied at a point be 2/0 and

3/60 . Then the resultant is ^4 + 9+ 12 X J- /tan -,
1 ^ 3

= 4- 36/36 3Q'-

If the first component is given as/j/0lf then we have the

more symmetrical formula

OC = ^+/,< + 2/,/, cos (,-*,) l^XXt/Xi
When the components are equal, the direction of the re-

sultant bisects the angle formed by the vectors; and the mag-
nitude of the resultant is twice the projection of either compo-
nent on the bisecting line. The above formula reduces to

OC = 2/ cos & /?.2/2
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Example. The resultant of two equal alternating electro-

motive forces which differ 120 in phase is equal in magnitude
to either and has a phase of 6o.

Given a vector and one component, to find the other com-

ponent. Let OC represent the resultant, and OA the compo-
nent. Join AC and draw OB equal and B c

parallel to AC. The line OB represents

the component required, for it is the only ,/
line which combined with OA gives OC A' o

~ Â

as resultant. The line OB is identical with the diagonal of the

parallelogram formed by OC and OA reversed
;
hence the rule

is,
" Reverse the direction of the component, then compound

it with the given resultant to find the required component."
Let f/f) be the vector and fjo one component ; then the

other component is

fj, = */+/,-- 2//, e9*l-./+/CM 9

Given the resultant and the directions of the two compo-
nents, to find the magnitude of the components. The resultant

is represented by OC, and the directions by OX and OY.
From C draw CA parallel to OY, and CB
parallel to OX ;

the lines OA and OB cut

off represent the required components. It

is evident that OA and OB when com-

pounded produce the given resultant OC,
and there is only one set of two components which produces
a given resultant

;
hence they are the only pair of components

having the given directions.

Let//0 be the vector and /6l
and /09

the given directions.

Then
/ +/. cos (0,

- e
x ) =/cos {o

- e
x\

/ cos (0,
- 6

X) +/2 =/cos (0,
-

0),

from which it follows that

{cos (0
-

X)
- cos (0,

-
6) cos (0, X)

\

ft ~f "

I - cos
a

(0,
- 6

X )
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For example, let 100/60 , /30 ,
and /90 be given ;

then

. cos 30
/.= IOO

1 4- cos 6o'

Composition of any Number of Vectors applied at a com-

mon Point. The resultant may be found by the following

graphic construction : Take the vectors in any order, as A, B, C.

From the end of A draw B' equal and par-

allel to B, and from the end of B' draw C
}B equal and parallel to C\ the vector from

the beginning of A to the end of C is the

resultant of the given vectors. This follows

~2 1 by continued application of the parallelo-

gram construction. The resultant obtained is the same, what-

ever the order; and as the order is arbitrary, the area enclosed

has no physical meaning.

The result may be obtained analytically as follows :

Given /,/#, +// +/Jl% + . . . + fn /ln.

Now /,/*, =/,cos 6,/q+/l
sin ^l\

Similarly fJJK =/ cos
2/o +/ 2 sin 6, /^,

and fn/J>
= fn cos n/o +fn sin 6n /-

Hence 2\f/J\ = j^/cos 6\ /o + {^/sin 6\ /-

=
V(2f cos

Off
+ (^/sin BY tan- 1

-^^" g
.

In the case of a sum of simultaneous vectors applied at a com-

mon point, the ordinary rule about the transposition of a term in

an equation holds good. For example, if A -\-B + C 0,then
A + B = .C, and A + C = B, and B + C = - A< etc.

This is permissible because there is no real order of succession

among the given components.*

* This does not hold true of a sum of vectors having a real order of succes-

sion. It is a mistake to attempt to found space-analysis upon arbitrary formal
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Composition of Successive Vectors. The composition of

successive vectors partakes more of the nature of multiplica-

tion than of addition. Let Abe a. vector start- A

ing from the point O, and B a vector starting /

from the end of A. Draw the third side OP, {^-'''

and from O draw a vector equal to B, and from A

its extremity a vector equal to A. The line OP is not. the

complete equivalent of A -\- B ;
if it were so, it would also be

the complete equivalent of B -f- A. But A -f- B and B -\-A

determine different paths; and as they go oppositely around,

the areas they determine with OP have different signs. The

diagonal OP represents A -f- B only so far as it is consid-

ered independent of path. For any number of successive

vectors, the sum so far as it is independent of

path is the vector from the initial point of the

first to the final point of the last. This is also

true when the successive vectors become so small

as to form a continuous curve. The area between

the curve OPQ and the vector OQ depends on the path, and

has a physical meaning.

Prob. i. The resultant vector is 123/45 ,
and one component

is 100/0 ;
find the other component.

Prob. 2. The velocity of a body in agiven plane is 200 /75 ,
and

one component is 100/25 ;
find the other component.

Prob. 3. Three alternating magnetomotive forces are of equal
virtual value, but each pair differs in phase by 120

;
find the re-

sultant. (Ans. Zero.) rV^ w( , u ^
,7^

Prob. 4. Find the components of the vector 100/70 in the direc-

tions 20 and ioo.

Prob. 5. Calculate the resultant vector of 1/10 , 2/20 , 3/30 ,

4/40 -

Prob. 6. Compound the following magnetic fluxes: h sin nt -f-

h sin (nt i2o)/i2o + h sin (nt 24o)/24o. (Ans. %h/nt.)

laws; the fundamental rules must be made to express universal properties of the

thing denoted. In this chapter no attempt is made to apply formal laws to

directed quantities. What is attempted is an analysis of these quantities.
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Prob. 7. Compound two alternating magnetic fluxes at a point,

a cos ?it /o and a sin nt ' . (Ans. a /nt.)

Prob 8. Find the resultant of two simple alternating electromo-

tive forces 100/20 and 50/75 '

Prob. 9. Prove that a uniform circular motion is obtained by
compounding two equal simple harmonic motions which have the

space-phase of their angular positions equal to the supplement of the

time-phase of their motions.
'

4*m' f**"f-

Art. 3. Products of Coplanar Vectors.

When all the vectors considered are confined to a common

plane, each may be expressed asthe sum of two rectangular

components. Let i and/ denote two directions in the plane at

right angles to one another
;
then A = a

x
i -\- aJ, B = b

x
i+ bjy

R=xi-\-j/j. Here i and j are not unit-vectors, but rather

signs of direction.

Product of two Vectors. Let A= aj>-\-aJ and B = b[-\-b%f
be any two vectors, not necessarily of the same kind physically.

We assume that their product is obtained by applying the

distributive law, but we do not assume that the order of the

factors is indifferent. Hence

AB = (a x
i + aJ)(bli-\- bj) = afiji + aj>jj+ aJ)jj-\-aJ?JL

If we assume, as suggested by ordinary algebra, that the

square of a sign of direction is -j-, and further that the product

of two directions at right angles to one another is the direction

normal to both, then the above reduces to

AB = a
l
b

l + tfA + OA aj>^k.

Thus the complete product breaks up into two partial

products, namely, a
i
b

1 + a
3
b

9 which is independent of direc-

tion, and (a 1
b

i aj)^)k which has the axis of the plane for

direction.*

* A common explanation which is given of ij= k is that i is an operator,/an

operand, and k the result. The kind of operator which i is supposed to denote

is a quadrant of turning round the axis i ; it is supposed not to be an axis, but

a quadrant of rotation round an axis. This explains the result ij
'= k, but

unfortunately it does not explain ii + ;
for it would give ii = i.
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Scalar Product of two Vectors. By a scalar quantity is

meant a quantity which has magnitude and may be positive or

negative but is destitute of direction. The former partial

product is so called because it is of such a nature. It is

denoted by SAB where the symbol S, being in Roman type,

denotes, not a vector, but a function of the

vectors A and B. The geometrical mean-

ing of SAB is the product of A and the

orthogonal projection of B upon A. Let

OP and OQ represent the vectors A and B
;

draw QM and NL perpendicular to OP. o^_^._^n

Then

(OP)(OM) = (OP)(OL) + (OP)(LM),

-H#**.3L
= a

l
b

l +at
b

t
.

Corollary I. SBA = SAB. For instance, let A denote a

force and B the velocity of its point of application ;
then SAB

denotes the rate of working of the force. The result is the

same whether the force is projected on the velocity or the

velocity on the force.

Example I. A force of 2 pounds East -f- 3 pounds North is

moved with a velocity of 4 feet East per second+ 5 feet North

per second
;
find the rate at which work is done.

2X4+3X5= 23 foot-pounds per second.

Corollary 2. A 9 = a? + a* a*. The square of any vector

is independent of direction
;

it is an essentially positive or

signless quantity ;
for whatever the direction of A, the direction

of the other^ must be the same; hence the scalar product

cannot be negative.

Example 2. A stone of 10 pounds mass is moving with a

velocity 64 feet down per second + 100 feet horizontal per

second. Its kinetic energy then is

(64
s + ioo

a

) foot-poundals,
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a quantity which has no direction. The kinetic energy due to

64
s

the downward velocity is 10 X and that due to thehori-
' 2 k

zontal velocity is X lOO
2

;
the whole kinetic energy is ob-

tained, not by vector, but by simple addition, when the com-

ponents are rectangular.

Vector Product of two Vectors. The other partial product

from its nature is called the vector product, and is denoted by
VAB. Its geometrical meaning is the

product of A and the projection ofB which

is perpendicular to A, that is, the area of

the parallelogram formed upon A and B.

Let OP and OQ represent the vectors A
1 and By and draw the lines indicated by the

figure. It is then evident that the area

of the triangle OPQ = a
x
b
% \axa^ \bx

b
% (#, b

x)(b2
#

a),

s= -H^A - ,,)

Thus (ax
b9 ajb^k denotes the magnitude of the parallelo-

gram formed by A and B and also the axis of the plane in

which it lies.

It follows that VBA = VAB. It is to be observed

that the coordinates of A and B are mere component vectors,

whereas A and B themselves are taken in a real order.

Example. Let A = (ioz -f- iff) inches and B = (5*+ l2J)

inches, then VAB = (120 55)^ square inches; that is, 65

square inches in the plane which has the direction k for axis.

If A is expressed as aa and B as bft, then SAB ab cos .a/3,

where aft denotes the angle between the directions a and /3.

Example. The effective electromotive force of 100 volts

per inch /90 along a conductor 8 inch /45 is SAB = 8 X 100

cos /45 /90 volts, that is, 800 cos 45 volts. Here /45 indicates

the direction a and /90 the direction ft, and /45 /90 means

the angle between the direction of 45 and the direction of 90 .

Also VAB= ab sin aft . aft, where aft denotes the direction

-which is normal to both a and ft, that is, their pole.
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Example. At a distance of 10 feet /30 there is a force of

IOO pounds /6o . The moment is NAB
we 10 X 100 sin /30 /6o pound-feet 90 / /90

=2 1000 sin 30 pound-feet 90 / /90 .

Here 90 / specifies the plane of the angle and /90 the angle.
^

The two together written as above specify the normal k.

Reciprocal of a Vector. By the reciprocal of a vector is

meant the vector which combined with the original vector pro-

duces the product -f- 1. The reciprocal of A is denoted

by A' 1

. Since AB = ab (cos #/?-[- sin ap . a/3), b must equal

a~
l and /3 must be identical with a in order that the product

may be I. It follows that

I _ ^ __ aj,-\-aJ
<2 #

1 + ai

The reciprocal and opposite vector is A~\ In the figure

let OP = 2/3 be the given vector
;
then OQ = /? is its recipro-

cal, and OR =
( /3) is its reciprocal and %. I

< Q > 1 >

opposite.* R Q P

Example. If A = 10 feet East + 5 feet North, A~ l

s=s

feet East + feet North and A~x = :̂ r feet
125

'

125 125

East feet North.
125

Product of the reciprocal of a vector and another vector.

A~ lB = \AB,a

= ~A aA + *A + {*& aA)<*J0}>

= -
(cos aj3 -f- sin aft . aj3).

* Writers who identify a vector with a quadrantal versor are logically led to

define the reciprocal of a vector as being opposite in direction as well as recip-

rocal in magnitude.
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Hence SA~*B = -cos a6 and NA~ XB = -sin afi.ati.
a ' a ' r

Product of three Coplanar Vectors. Let A = aj -f a*Jy

B = bj -f- bj, C = cj -f- c*j denote any three vectors in a

common plane. Then

(AB)C = {(*A + aA) + (*A - aJ>M(cx
i + cj)

=
{<*A + <*A)ki* + cJ) + (*A - "A)(- v + c

x j).

The former partial product means the vector C multiplied

by the scalar product of A and B
;
while the

latter partial product means the comple-

mentary vector of C multiplied by the mag-
nitude of the vector product of A and B^

If these partial products (represented by OP
and OQ) unite to form a total product, the total product will be

represented by OR, the resultant of OP and OQ.

The former product is also expressed by SAB . C, where the

point separates, the vectors to which the S refers; and more

analytically by {abc cos aryfj/^

The latter product is also expressed by (VAB)C, which is

equivalent to V(VAB)C, because NAB is at right angles

to C. It is also expressed by abc sin a/3, afly, where a/3y de-

notes the direction which is perpendicular to the perpendicular

to a and /?,and y.

If the product is formed after the other mode of association

we have

A(BC) = (*,*+ </>(Vi + V.) + W + aj)(bx
c
%
- bjx)k

= (Vi +WW + a*J) + (fo -WW ~~*iJ)

=zSBC.A +VA(VBC).

The vector aj aj is the opposite of the complementary
vector of a

x
i + a9 j\ Hence the latter partial product differs

with the mode of association.

ExampleLet A = i/o + 2/90 ,
B = 3/0 + 4/90 ,

C = 5/0 + 6/90 . The fourth proportional to ^4, B, C is

\^>
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(A-*E)C =
lX

l

3

+;,
X4

{ 5/o! + 6/90 I

1 X 4-2X3
j

_ 6 ^ + 5/go_o j

1 "T 2

= 13.4/0^+11.2/90.

Square of a Binomial of Vectors. If A -\- B denotes a

sum of non-successive vectors, it is entirely equivalent to the

resultant vector C. But the square of any vector is a positive

scalar, hence the square of A -\- B must be a positive scalar.

Since A and B are in reality components of one vector, the

square must be formed after the rules for the products of rect-

angular components (p. 432). Hence

(A+By = (A+B)(A+B),
= A* + AB + BA + B\ {T/th - - V& A-

= A* + B* + SAB + SBA + NAB + VBA,
= A' + B1 + 2SAB.

This may also be written in the form L
^^

#2 + & + 2ab cos <*#

But when A -\- B denotes a sum of successive vectors, there

is no third vector C which is the complete equivalent ;
and con-

sequently we need not expect the square to be a scalar quan-

tity. We observe that there is a real order, not of the factors,

but of the terms in _the-binomial ;
this causes both product

terms to be AB, giving

(A + B)
2= A' + 2AB + B7

= A 2

+B* + 2SAB + 2VAB.

The scalar part gives the square of the length of the third

side, while the vector part gives four times the area included

between the path and the third side.

Square of a Trinomial of Coplanar Vectors. Let A -\- B -{-

C denote a sum of successive vectors. The product terms must

be formed so as to preserve the order of the vectors in the tri-

nomial
;
that is, A is prior to B and C, and B is prior to C.
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Hence

{A + B + Cf = A' + B* + C + 2AB+ 2AC+ 2BC,

= A* + B* + C' + 2(SAB + SAC+ SBC), (1)

+ 2(VAB + VA C + VBC). (2)

Hence S(A+B+Cy = (i)

= c? + &* + f + 2^ cos <*/* + 2^ cos ^r + 2b cos /^y

and V(^+Z?+02 = (2)

= \2ab sin a/? + 2ac sin a;/ + 2^ sin /3y\. aft

The scalar part gives the square of the vector from the be-

c ginning of A to the end of C and is all that exists

when the vectors are non-successive. The vector

'

B part is four times the area included between the

successive sides and the resultant side of the

A polygon.

Note that it is here assumed that V(A + B)C = VAC+
VBC, which is the theorem of moments. Also that the prod-

uct terms are not formed in cyclical order, but in accordance

with the order of the vectors in the trinomial.

Example. Let A 3/0* B = S/30 ,
C = 7/4$ ;

find the

area of the polygon.

iV(AB+ AC+ BC),
= i{ 15 sin [o /30 + 21 sin /o /45 + 35 sin /30 /45 },

= 375 + 742 + 4.53 = 157.

Prob. 10. At a distance of 25 centimeters /20 there is a force

of 1000 dynes /8o; find the moment.

Prob. 11. A conductor in an armature has a velocity of 240
inches per second /300 and the magnetic flux is 50,000 lines per

square inch /o; find the vector product.

(Ans. 1.04 X io T
lines per inch per second.)

Prob. 12. Find the sine and cosine of the angle between the

directions 0.8141 E. + 0.5807 N., and 0.5060 E. + 0.8625 N.

Prob. 13. When a force of 200 pounds /270 is displaced by
10 feet /30 ,

what is the work done (scalar product) ? What is the

meaning of the negative sign in the scalar product ?
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Prob. 14. A mass of 100 pounds is moving with a velocity of 30
feet E. per second + 5 feet SE. per second; find its kinetic energy,

Prob. 15. A force of 10 pounds /45 is acting at the end of 8-

feet /200 ;
find the torque, or vector product.

Prob. 16. The radius of curvature of a curve is 2/0 + 5/90 ;

find the curvature. (Ans. .03/0 -J- .17/90 .)

Prob. 17. Find the fourth proportional to 10/0 + 2/90

8/o
-

3/9o_, and 6/o_ + 5/9o_.

Prob. 18. Find the area of the polygon whose successive sides

are 10/30 , 9/100 , 8/180 , 7/2 2 5 .

Art. 4. Coaxial Quaternions.

By a "
quaternion

"
is meant the operator which changes

one vector into another. It is composed of a magnitude and

a turning factor. The magnitude may or may not be a mere

ratio, that is, a quantity destitute of physical dimensions
;
for

the two vectors may or may not be of the same physical kind.

The turning is in a plane, that is to say, it is not conical. For

the present all the vectors considered lie in a common plane ;

hence all the quaternions considered have a common axis.*

Let A and R be two coinitial vectors
;
the direction normal

to the plane may be denoted by fi. The operator which

changes A into R consists of a scalar multiplier

and a turning round the axis /3. Let the former be

denoted by r and the latter by fi
e

,
where denotes #/ ^^par

the angle in radians. Thus R = r/3
eA and recip-

rocally A = -/3~
eR. Also Lr = r/3

e and A = -/3~ .7
r A R r

The turning factor ft
9 may be expressed as the sum of two

component operators, one of which has a zero angle and the

other an angle of a quadrant. Thus

j3
e = cos B . /5 + sin 6 . p*/\

* The idea of the "quaternion" is due to Hamilton. Its importance may-

be judged from the fact that it has made solid trigonometrical analysis possible.

It is the most important key to the extension of analysis to space. Etymologi-

cally "quaternion" means defined by four elements; which is true in space in

plane analysis it is defined by two.
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When the angle is naught, the turning-factor may be

omitted
;

but the above form shows that the equation is

homogeneous, and expresses nothing but the equivalence of a

given quaternion to two component quaternions.*

Hence rfi
= r cos 6 + r sin . p"'

2

^p+ q.F*
and r/3A =pA -\-q/3"/A

= pa . a -{- qa . (3
n/2a.

The relations between r and 6, and / and q, are given by

r= Vp* + q\ = tan- 1

^.

q

Example. Let E denote a sine alternating electromotive

force in magnitude and phase, and / the alternating current in

magitude and phase, then

E= (r+ 2nnl. fi*/%

where r is the resistance, / the self-induction, n the alternations

per unit of time, and (3 denotes the axis of the plane of repre-

sentation. It follows that E rl
'

-\- 2nnl . fi"/*I; also that

J-'E = r-{- 2nnl . /?*/*,

that is, the operator which changes the current into the elec-

tromotive force is a quaternion. The resistance is the scalar

part of the quaternion, and the inductance is the vector part.

Components of the Reciprocal of a Quaternion. Given

R=(p + q.^/*)A,

then A = l R
p+ q./F/*

p-g.p/* R
(P+ q.p"*)(p-q.p*)

R_p q. p,%

* In the method of complex numbers (3*/z is expressed by i, which stands

for |/ i. The advantages of using the above notation are that it is capable

of being applied to space, and that it also serves to specify the general turning

factor /3
e as well as the quadrantal turning factor ft*/*.
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Example. Take the same application as above. It is im-

portant to obtain / in terms of E. By the above we deduce

that from E = (r + 2tt;//. /3
n
/*)I

w+ (27tn/y r
%+ (27tniy--

Addition of Coaxial Quaternions. If the ratio of each of

several vectors to a constant vector A is given, the ratio of

their resultant to the same constant vector is obtained by tak-

ing the sum of the ratios. Thus, if

&n = (A + Qn /3"*)A,

then 2R = {2p+ (2?) . /**/} -4,

and reciprocally

A ~
(2py + (2gy

*"

Example. In the case of a compound circuit composed
of a number of simple circuits in parallel

_ r
x
-innl

x .p*l* p r
%
- 2nnl

% . p"*^ - r *

_|_ (2^)VI

i ' 3
"

r
2

a + (2)V,
t ' '

therefore, 2;/= 2 i a , , ^-=- \ E

=
\ 2[ a

,

*
~\ 2nn2-rT1 wji'P''* i E>

[
\r -\-(2 7tnyi

a

) r -\-(27tnyi*
r

j

and reciprocally

s( .
,
/ WJ + 2 >r^( / )

. /W*
^ - i y / t y 21*

\
2

r^+ {2 7rnyH
+ (***? \

2
r>+ (2xnyr)

Product of Coaxial Quaternions. If the quaternions which

change A to R, and R to R'
y
are given, the quaternion which

changes A to R' is obtained by taking the product of the given

quaternions.

*This theorem was discovered by Lord Rayleigh; Philosophical Magazine,

May, 1 886. See also Bedell & Crehore's Alternating Currents, p. 238.
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Given R = r/PA = (p+ q. Pn/2)A
and R' = r''R = (/ + q' . p*/*)R,

then R' = rr>'/3
e+e ' A = {(// - qq') + (pq' +/q) . ft*)A?

Note that the product is formed by taking the product of

the magnitudes, and likewise the product of the turning fac-

tors. The angles are summed because they are indices of the

common base /?.*

Quotient of two Coaxial Quaternions. If the given qua-

ternions are those which change A to R, and A to R'
y
then that

which changes R to R' is obtained by taking the quotient of

the latter by the former.

Given R = r/FA = (p + g. fi"/*)A

and R! = r'fi*A = (/+ q' . F'*)A t

then R' = - pe'-*R
t

r

= (P' + t.^-%pR,
axei

_ (// + qq') + {pq'-P'q) P* P
f + q>

Prob. 19. The impressed alternating electromotive force is 200

volts, the resistance of the circuit is 10 ohms, the self-induction is

3-J-0 henry, and there are 60 alternations per second ; required the

current. (Ans. 18.7 amperes / 20 42'.) r=- fo<

Prob. 20. If in the above circuit the current is 10 amperes, find

the impressed voltage.

Prob. 21. If the electromotive force is no volts /B and the cur-

rent is 10 amperes /0 \n, find the resistance and the self-induc-

tion, there being 120 alternations per second.

Prob. 22. A number of coils having resistances rv r
ti etc., and

self-inductions l
x ,

/
2 , etc., are placed in series ; find the impressed

electromotive force in terms of the current, and reciprocally.

*Many writers, such as Hayward in "Vector Algebra and Trigonometry,"

and Stringham in
"
Uniplanar Algebra," treat this product of coaxial quater-

nions as if it were the product of vectors. This is the fundamental error in the

Argand method.
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Art. 5. Addition of Vectors in Space.

A vector in space can be expressed in terms of three inde-

pendent components, and when these form a rectangular set

the directions of resolution are expressed by i,j\ k. Any vari-

able vector R may be expressed as R ~ rp = xi-\-yj -\-zk, and

any constant vector B may be expressed as

B = l>/3
= bj + bj-\-b,L

In space the symbol p for the direction involves two ele-

ments. It may be specified as

xi+ yj+ zk
P= s +y+ ir

where the three squares are subject to the condition that their

sum is unity. Or it may be specified by this notation, <p//0,

a generalization of the notation for a plane. The additional

angle 0/ is introduced to specify the plane in which the angle
from the initial line lies.

If we are given R in the form r<p//0, then we deduce the

other form thus :

R = r cos 6 . i -f- r sin 6 cos <p.j-\-r sin 6 sin . k.

If R is given in the form xi + yj'+ zk, we deduce

^f + z*R= Vx* +/ + z> tan-
l

j
tan

For example, B io 30//45_
aa io cos 45. i -f io sin 45 cos 30 ./+ 10 sin 45 sin 30

Again, from C 32 + 4/+ $k we deduce

.*.
##

5 // , V411 // bn" 1 -L-V9 + 16 + 25 tan" 1 ~
//

tan

= 7.07 ,5i.4//64-9 .

To find the resultant of any number of component vectors

applied at a common' point, let Rlt R . . . i?M represent the n
vectors or,
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Rn = xj+yn/+ snk;

then 2R = {2x)i+ (2y)f+ (2s)k

and r = V(Z*y + (i" + (^)
2

,

2s , n V{2y)* + {2*y
tan0 = v- and tan = v L

Successive Addition. When the successive vectors do not

lie in one plane, the several elements of the area enclosed will

lie in different planes, but these add by vector addition into a

resultant directed area.

Prob. 23. Express A = 4/ 5/ -f- 6k and B = 5/ -f- 6/ 7k in

the form r$]/J. (Ans. 8.8 1307/63 and 10.5 3117/61^.5.)

Prob. 24. Express C = 123 577/142 and Z> = 456 657/200
in the form #* + jiy + zk.

^ t^ n //n -, ^ 7T // 7t .

Prob. 25. Express . = 100 // - and F= 1000 //?- in
4// 3 6// ^4

the form xi -\-yj + *&

Prob. 26. Find the resultant of 10 207/30, 20 307/40, and

.30 4o7/5^- __
Prob. 27. Express in the form r(f>/6 the resultant vector of

If + 2/ $ky 4* 5/+ 6, and 71 + 8/'+ gk.

Art. 6. Product of two Vectors.

Rules of Signs for Vectors in Space. By the rules i* = +>
7

2 = +, ij k, andyV = k we obtained (p. 432) a product of

two vectors containing two partial products^ ^ch of which has

the highest importance in mathematical and physical analysis.

Accordingly, from the symmetry of space we assume that the

following rules are true for the product of two vectors in space :

* = +, r = +1 & = +,

V k, Jk = h ki j,

ji =z k, kj = *, ik = j.

The square combinations give results which are indepen-
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dent of direction, and consequently are summed by simple
addition. The area vector determined by
i andj can be represented in direction by k

y

because k is in tri-dimensional space the axis

which is complementary to i and/. We also

observe that the three rules if
= k, jk =.

i,

ki =zj are derived from one another by cyc-

lical permutation ;
likewise the three rules

ji = &, kj = i, ik = j. The figure shows that these

rules are made to represent the relation of the advance to the

rotation in the right-handed screw. The physical meaning of

these rules is made clearer by an application to the dynamo and

the electric motor. In the dynamo three principal vectors have

to be considered : the velocity of the conductor at any instant,

the intensity of magnetic flux, and the vector of electromotive

force. Frequently all that is demanded is, given two of these

directions to determine the third. Suppose that the direction

of the velocity is z, and that of the flux/, then the direction of

the electromotive force is k. The formula ij
= k becomes

velocity flux = electromotive-force, -w o
, g^

from which we deduce ^
/

flux electromotive-force = velocity,

and electromotive-force velocity = flux.

The corresponding formula for the electric motor is

current flux = mechanical-force,

from which we derive by cyclical permutation
flux force = current, and force current = flux.

The formula velocity flux = electromotive-force is muclv

handier than any thumb-and-finger rule
;
for it compares the

three directions directly with the right-handed screw.

Example. Suppose that the conductor is normal to the

plane of the paper, that its velocity is towards the bottom, and

that the magnetic flux is towards the left
; corresponding to

the rotation from the velocity to the flux in the right-handed

screw we have advance into the paper : that then is the direc-

tion of the electromotive force.

Again, suppose that in a motor the direction of the current



446 VECTOR ANALYSIS AND QUATERNIONS. [CHAP. IX.

along the conductor is up from the paper, and that the mag-
netic flux is to the left

; corresponding to current flux we have

advance towards the bottom of the page, which therefore must

be the direction of the mechanical force which is applied to

the conductor.

Complete Product of two Vectors. Let A = a
xi-\-aJ -\-a%

k

and B = b
xi-\-b%j -\- b

t
k be any two vectors, not necessarily

of the same kind physically, Their product, according to the

rules (p. 444), is

AB = (aj+ aj+ a
%k){b x

i+ bj+ b
sk),

= a
x
b

xii-\- ajb^jj -f- a.bjzk,

+ ajbjk+ ajbjy + a%bx
ki + a

x
b

%
ik+ a

xbjj+ aj)ji
= a

x
b

x + a,b, + a
z
b

+ (*A - <*AY+(*A - <*A)j+ (A *A)
= *A+"A+ *A +

bn Ik

, which has the direction normal to the plane of

i j k

Thus the product breaks up into two partial products,

namely, A"f" #A+^A which is independent of direction, and

a
x

#
2

a
3

K K K
i j k

A and B. The former is called the scalar product, and the

latter the vector product.

In a sum of vectors, the vectors are necessarily homogene-

ous, but in a product the vectors may be heterogeneous. By
making a%

= b
s
= O, we deduce the results already obtained

for a plane.

Scalar Product of two Vectors. The scalar product is de-

noted as before by SAB. Its geometrical

meaning is the product of ^ and the orthog-
onal projection of B upon A. Let OP rep-
resent A, and OQ represent B, and let OL,
LM, and MN be the orthogonal projections

upon OP of the coordinates bj, bj, b
%
k re.

spectively. Then ON is the orthogonal pro-

jection of OQ, and
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OP X ON = OP X (OL + LM + MN),

\ a a ay
= a

l
b

1 -\- aj)% -\- aj?%
= SAB.

Example. Let the intensity of a magnetic flux be

B= bj-\- bJ-\- b
zk, and let the area be S = sj -\- s^j -{- ssk ;

then the flux through the area is SSB b
1
s

l -\- b
2
s
2 -|- b

z
s
a .

Corollary I. Hence SBA = SAB. For

b
x
a

x + b,a,+ b
t
a

z
= aJ>x+ a

2b,+ a
%
b

t .

The product of B and the orthogonal projection on it of A
is equal to the product of A and the orthogonal projection on

it of B. The product is positive when the vector and the pro-

jection have the same direction, and negative when they have

opposite directions.

Corollary 2. Hence A % = a*-\-a*-\-a* = a"*. The square of

A must be positive ; for the two factors have the same direction.

Vector Product of two Vectors. The vector product as

before is denoted by VAB. It means the product of A and

the component of B which is perpendicular to A, and is rep-

resented by the area of the parallelogram formed by A and B.

The orthogonal projections of this area upon the planes of jk,

ki, and ij represent the respective components of the product.

For, let OP and OQ (see second figure of Art. 3) be the or-

thogonal projections of A and B on the plane of i and/; then

the triangle OPQ is the projection of half of the parallelogram

formed by A and B. But it is there shown that the area of

the triangle OPQ is \{a x
b

2 ajb^). Thus (a,ba ajj^)k denotes

the magnitude and direction of the parallelogram formed by
the projections of A and B on the plane of i and/ Similarly

(ajbt
as
b
7)i denotes in magnitude and direction the projec-

tion on the plane of j and 1% and (az
b

l a.b^j that on the

plane of k and i.

Corollary 1. Hence NBA = VAB.

Example. Given two lines A = ji 10/+ ik and B =
9^+ 4/ 6k; to find the rectangular projections of the par-

allelogram which they define :
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VAB = (60
-

12)1 + (- 27 + 42)/+ (28
-

9o)k
= 482 + 1 57 62i\

Corollary 2. If A is expressed as aa and i? as /?, then*

SAB = # cos #/? and V^i? = # sin a/3 . a/?, where aft de-

notes the direction which is normal to both a and /3, and
drawn in the sense given by the right-handed screw.

Example. Given A -
r^//B_ and B r'07/0'. Then

SAB = rr' cos T]/]/J[_

= rr' {cos 6 cos 0' -f sin 6 sin 0' cos (0' <p)).

Product of two Sums of non-successive Vectors. Let A and
B be two component vectors, giving the resultant A -f- B, and
let C denote any other vector having the same point of appli-

cation.

Let A = aj, -f- aJ -f- a%k,
-A+B

B = bli+bj+bJ,
C= Cli+cJ+ cjz.

Since A andB are independent of order*

A +B = (a, + 6
x)i+ (a, + ,)j+ (a, + b,)k,

consequently by the principle already established

S(A + B)C = (a, + ifc+ (*,+ bfc + (a,+ b%)e%

= SAC+ SBC.

Similarly V(i* + B)C = { (a, + *>, - (*, + *,K I
'+ etc.

= (atct
-^t>*+ (b%c% b3

c
3)i+ . . .

Hence (A + B)C= AC+BC.
In the same way it may be shown that if the second factor

consists of two components, C and D
y
which are non-successive

in their nature, then

(A+B)(C+D)=AC+AD + BC+ BD.
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When A -f- B is a sum of component vectors

(A + BY = A* -{- B* + AB + BA

Prob. 28. The relative velocity of a conductor is S.W., and the

magnetic flux is N.W.; what is the direction of the electromotive

force in the conductor ?

Prob. 29. The direction of the current is vertically downward,
that of the magnetic flux is West; find the direction of the mechani-

cal force on the conductor.

Prob. 30. A body to which a force of 2$ -\- y -f- 4k pounds is

applied moves with a velocity of 5/+ 6/-+- 7& feet per second; find

the rate at which work is done.

Prob. 31. A conductor 8/+ 9/"+ IO& inches long is subject to

an electromotive force of 111-f- 12/+ 13^ volts per inch; find the

difference of potential at the ends. (Ans. 326 volts.)

Prob. 32. Find the rectangular projections of the area of the

parallelogram defined by the vectors A = 12/ 23/* 34^ and
B -

45/
-

56/ -f 67^.

Prob. 33. Show that the moment of the velocity of a body with

respect to a point is equal to the sum of the moments of its com-

ponent velocities with respect to the same point.

Prob. 34. The arm is gt -{- 11/+ 13^ feet, and the force applied
at either end is 17* -f- 197 + 25k pounds weight; find the torque.

Prob. 35. A body of 1000 pounds mass has linear velocities of 50

ieei per second 3o//45 and 60 feet per second 6o//22.5; find

its kinetic energy.
Prob. 36. Show that if a system of area-vectors can be repre-

sented by the faces of a polyhedron, their resultant vanishes.

Prob. 37. Show that work done by the resultant velocity is equal
to the sum of the works done by its components.

Art. 7. Product of Three Vectors.

Complete Product. Let us take A = a
x
i + aJ -f a

%
kr

B = b
x
i+ bj+ b

%k, and C = cj + cJ-\- cjs. By the product
of A, B, and C is meant the product of the product of A and
B with C, according to the rules p. 444). Hence

ABC = (A + aj>% + ffAX'j*' + CJ+ c k
)

+K*A - *A>"+ Wi - aA)J+ (A - aib l)k}(c li+cj+ c
zk)

=
( A + A + *A)(cj+ cj+ ^) (1)
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By adding to the first of these components the null term

{b l
c

l
a

l
c

x
a

xb^i we get SBC . a
xi-\- SCA . b

x i, and by treating

the other two components similarly and adding the results we

obtain

V{VAB)C = - SBC . A + SCA . B.

The principle here proved is of great use in solving equa-

tions (see p. 455).

Example. Take the same three vectors as in the preced-

ing example. Then

V{VAB)C= -(2& + 40+ S4)(li+ 2/+$k)
+ (; + 16 + 27X4* + 5/ + 6)
= 7$i + 6/ 66k.

The determinant expression for this partial product may
also be written in the form

K K j k bv

+
J

a
%
a

x

It follows that the frequently occurring determinant expression

+
d*d%

+ a
%
a

x

dAM.
means S(VAB)(VCD).

Third Partial Product. From the determinant expression

for the third product, we know that

S(VAB)C=S(VBC)A = S(VCA)B
= - S{VBA)C = - S(VCB)A = - S(VAC)B.

Hence any of the three former may be expressed by SABCt

and any of the three latter by SABC.

The third product S(VAB)C is represented by the vol-

ume of the parallelepiped formed by the vectors A, B, C
taken in that order. The line VAB vab

represents in magnitude and direction

the area formed by A and B, and the

product of VAB with the projection

of C upon it is the measure of the

volume in magnitude and sign. Hence the volume formed

by the three vectors has no direction in space, but it is posi-

tive or negative according to the cyclical order of the vectors.

<P/
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In the expression abc sin a/3 cos a/3y it is evident that sin afi

corresponds to sin 0, and cos a/3y to cos cp, in the usual for-

mula for the volume of a parallelepiped.

Example. Let the velocity of a straight wire parallel to

itself be V = 1000/30 centimeters per second, let the intensity

of the magnetic flux be B 6000 /90 lines per square cen-

timeter, and let the straight wire L = 15 centimeters 60 / /45 .

Then V VB = 6000000 sin 6o 90 / /90 lines per centimeter per

second. Hence S{VVB)L = 15 X 6000000 sin 6o cos0 lines

per second where cos0 = sin 45 sin 6o.

Sum of the Partial Vector Products. By adding the first

and second partial products we obtain the total vector product

of ABC, which is denoted by V(ABC). By decomposing the

second product we obtain

V(ABC) = SAB. C - SBC . A + SCA . B.

By removing the common multiplier abc, we get

V(a/3y) = cos a/3 . y cos /3y . a -\- cos ya . ft.

Similarly V(fiya) = cos fiy . a cos ya . /3 -f- cos a/3 . y
and V(ya/3) = cos ya . /? cos a/3 . y + cos /3y . a.

These three vectors have the same magnitude, for the

square of each is

cos
2

afi -\- cos
2

fiy -f cos
2

ya 2 cos a/3 cos /3y cos ya, \
]

that is, I -{S(a/3y)\\

They have the directions respectively of a',

ja fi'> kV which are the corners of the triangle

whose sides are bisected by the corners a,

V
/3, y of the given triangle.

Prob. 38. Find the second partial product of

9 2o//30, 10 30 / /40 ,
11 45/ /45 - Also the third partial

product.

Prob. 39. Find the cosine of the angle between the plane of

/j/+/,y+ n
x
k and /a *'+ /,/+ a

^ and the plane of i
si-\-m tj -\- n z

k

and /
4
/ + mJ 4" w4^

Prob. 40. Find the volume of the parallelepiped determined by
the vectors ioo/-f-5o/+ 25>, 50/+ 10/+ 8o, and 75/+ 407 80/k
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Prob. 41. Find the volume of the tetrahedron determined by the

extremities of the following vectors : 31 2j -f- ikt 4/ -f- 5/

'

7^,

3/ 77 *, 8/ + 4/' 3/^.

Prob. 42. Find the voltage at the terminals of a conductor when
its velocity is 1500 centimeters per second, the intensity of the mag-
netic flux is 7000 lines per square centimeter, and the length of the

conductor is 20 centimeters, the angle between the first and second

being 30 ,
and that between the plane of the first two and the direc-

tion of the third 6o. (Ans. .91 volts.)

Prob. 43- Let a= 2^7/10, fi= J07/25 , y = 4^7/35- Find

Vafiy, and deduce Vfiya and Vya/3.

Art. 8. Composition of Quantities.

A number of homogeneous quantities are simultaneously

located at different points ;
it is required to find how to add or

compound them.

Addition of a Located Scalar Quantity. Let mA denote a

mass m situated at the extremity of the radius-

vector A. A mass m m may be introduced

at the extremity of any radius-vector R, so

that

mA = {in ni)R -\- mA

= mR + mA mR

mR + m(A A5

).

Here A R is a simultaneous sum, and denotes the radius-

vector from the extremity of R to the extremity of A. The

product m(A R) is what Clerk Maxwell called a mass-vector,

and means the directed moment of m with respect to the ex-

tremity of R. The equation states that the mass m at the

extremity of the vector A is equivalent to the equal mass at

the extremity of R, together with the said mass-vector applied

at the extremity of R. The equation expresses a physical or

mechanical principle.

Hence for any number of masses, m x
at the extremity of A lt

m
7
at the extremity of A^ etc.,

2mA = 2mR + 2{M(A-R)\,
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where the latter term denotes the sum of the mass-vectors,

treated as simultaneous vectors applied at a common point.

Since 2{m(A R)} = 2mA 2mR
= 2mA R2m

f ir^JJ^A YMrwuir

the resultant moment will vanish if

R = c ,
or R2m = 2mA2m

Corollary. Let R = xi+yj+ zk,

and A a
x
i + bj+ c

x
k

;

then the above condition may be written as

1 ** ' 2m

_ 2(ma) . i (2mb) .j, 2(mc) . k

2m 2m 2m '

2(ma) 2(mb) 2mc
therefore x = ^ , y = ^ ,

z=

(yW' Example. Given 5 pounds at 10 feet 45//30 and 8

pounds at 7 feet 6o//45 I find the moment when both masses,

are transferred to 12 feet 75//6o.

;^,y4, = 5o(cos 30* + sin 30 cos 45 y -f- sm 3 sm 45^')>

ws
i4

5
= $6(cos 45? -|- sin 45 cos 6oy -f- sin 45 sin 6o),

>j {m 1 + #z
2)i? = i56(cos 6oz + sin 6o cos j$ j -\- sin 6o sin 75vfc)> .

moment = w,^, -f- m^A^ (w, -f ;/z
2)i?.

Composition of a Located Vector Quantity. Let FA de-

note a force applied at the extremity of the radius-vector A.

As a force F F ma\\ introduced at the ex-

tremity of any radius-vector 7?, we have

==T* + V(A - R)F.

This equation asserts that a force F applied

at the extremity of A is equivalent to an equal force applied

at the extremity of R together with a couple whose magnitude



AR.T. 8.]
COMPOSITION OF QUANTITIES.

"

455

and direction are given by the vector product of the radius-

vector from the extremity of R to the extremity of A and the

force.

Hence for a system of forces applied at different points,

such as F
l
at A lt F^ at A etc., we obtain

2(FA )
= 2(FS) + 2V(A - R)F
= (2F) R+ 2V(A-R)F

Since 2V(A - R)F = 2VAF - 2VRF
= 2VAF- VR2F : ^^kJ\C^\J^

the condition for no resultant couple is

VR2F= ZVAF,

which requires 2F to be normal to 2VAF. ut f^ ^Vv

\
H^ s

Example. Given a force li -\- 2j -\- $k pounds weight at

a 41 + 5/+6 feet, and a force of ji -\- oj -^nk pounds weight
at \oi -\- I2j^ 14k feet; find the torque which must be sup-

plied when both are transferred to 2t -\- $/-jfc 3&, so that the

effect may be the same as before. ***

VA tFt
= &-1jf+&

VA
tF, = 6i i2j+ 6k,

2VAF= gi- iSj + gk,

2F= 8z+ u/+ 14/fr,

VR2F=tfi~4j- iSk,

Torque = - 28* - 147 + 27k. ^ VfA3< WnIJQ

By taking the vector product of the above equal vectors

with the reciprocal of 2F we obtain

V
j
<yR2F) p \

V
j (2VAF)^, \

.

By the principle previously established the left member

resolves into R -\- SR^p. 2F; and the right member is

equivalent to the complete product on account of the two

factors being normal to one another
;
hence

- R+ SR~ . 2F=
2{VAF)^.;
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that is, R =
^p2{VAF) + SK^F - SR

(>) (2)

The extremity of R lies on a straight line whose perpen-
dicular is the vector (i) and whose direction is that

of the resultant force. The term (2) means the

projection of R upon that line.

The condition for the central axis is that the

resultant force and the resultant couple should

have the same direction
;
hence it is given by

V
\
2VAF- VR2F\ZF= o

;

that is, V(VR^F)2F=V(^F)2F. -V
By expanding the left member according to the same prin-

ciple as above, we obtain ^_____^
- (2F)*R+ SR2F. 2F=

V{2jAF)2F;

therefore R = ^VSJ^SAF) + ~^. 2F

=
v{ir)(VZAF) + SR^.ZF

This is the same straight line as before, only no relation is

now imposed on the directions of 2F and 2VAF; hence there

always is a central axis.

Example. Find the central axis for the system of forces

in the previous example. Since 2 F= 8z-f- 11/+ J4A the

direction of the line is

8/+ 117+ 14^

V64 + 121 + 196'

1 8/4-1 1/ 4- idk
Since

2j?
=

31
and 2VAF= gi

-
iSj+ gk, the

perpendicular to the line is

Prob. 44. Find the moment at qo~VA7o of 10 pounds at 4 feet

10 //20 and 20 pounds at 5 feet 30 //i2o
c
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Prob. 45. Find the torque for qi-\-y-\-2k pounds weight at

21 y -\~ik feet, and 2/ 1/ impounds weight at 3/ + 4/'+ 5^
feet when transferred to 3* -+- 2/ 4^ feet.

Prob. 46. Find the central axis in the above case.

Prob. 47. Prove that the mass-vector drawn from any origin to a

mass equal to that of the whole system placed at the center of mass

of the system is equal to the sum of the mass-vectors drawn from

the same origin to all the particles of the system.

Art. 9. Spherical Trigonometry.

Let z,j\ k denote three mutually perpendicular axes. In

order to distinguish clearly between an axis and a quadrantal

version round it, let i
9
,j", kn/* denote

quadrantal versions in the positive sense

about the axes i,js k respectively. The

directions of positive version are indicated
-j)

by the arrows.

By ^*C'%
is meant the product of two

quadrantal versions round 1; it is equiv- ^-k

alent to a semicircular version round i\ hence i
w/

*t*
/% = i* = .

Similarlyf,%f means the product of two quadrantal versions

round/, yoAf
t%f,% =f = -. Similarly kw/*kv/* = & = -.

By t
m/t/

t^t
is meant a quadrant round i followed by a quad-

rant round/; it is equivalent to the quadrant from /to i, that

is, feo kn/\ Butj
n/Hn/i

is equivalent to the quadrant from i

to /, that is, to kw/t. Similarly for the other two pairs of

products. Hence we obtain the following

Rules for Versors.

/, -ir/a __ f/tf/% _ k*^*k
9^*

&/%f
f% f/t i*f*k

^ = 1*^*

The meaning of these rules will be seen from the follow

ing application. Lei li -f- mj + nk denote any axis, then
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{it -f- mj -f- ^)7r/a denotes a quadrant of angle round that axis.

This quadrantal version can be decomposed into the three

rectangular components /i
n/

*, mj
n/

*, nJF*
%

;
and these components

are not successive versions, but the parts of one version. Sim-

ilarly any other quadrantal version (l'i-\-tnj-\-n'ky* can be

resolved into /V'*, wjn/i
f
n'J

t,'i
. By applying the above rules,

we obtain

(It + mj+ nk)
K/\n+ m'j+ n'k)

w/'

= (/r
/a + mfu + nkw/t)(I

f
t

r/i + m'f'*+ rfk9/%)

= (II
'

-\- mm' -f- nn')

- {mri - m*nyl% - (/' - n'l)f
/% -

(/*'
- l'm)k

vU

=
(//'+ mm ' + o

_
|(w;/

_ m'ny+(nl' - n'l)j+(lm'
-

l'm)k\
v
'\

Product of Two Spherical Versors. Let fi denote the axis,

and b the ratio of the spherical versor PA, then the versor

itself is expressed by J3
b
. Similarly let y

denote the axis and c the ratio of the

spherical versor AQ, then the versor itself

is expressed by y
c
.

Now /3
b = cos b + sin b . F'\

and y
c = cose -\- sine . y

n/*
;

therefore

py =
(cos '+ sin b /^'X*** ^ + sin r . r

ff/a

)

= cos # cos + cos b sine . y
n

-\- cos c sin ^ . /3

W

. + sin sin . fT
U
y

lt,
\.

But from the preceding paragraph

^r/y/. = _ cos py _ sin py f Jy"/*
.

therefore ^^c = cos cos c sin # sin cos /?/ (i)

-f- \
cos 3 sin c . y -|- cos sin # . /? sin # sin ^ sin /?;/ . /3y }

ir/
*. (2)

The first term gives the cosine of the product versor
;

it is

equivalent to the fundamental theorem of spherical trigonom-

etry, namely,
cos a = cos b cos c + sin b sin c cos A,
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where A denotes the external angle instead of the angle in-

cluded by the sides.

The second term is the directed sine of the angle ;
for the

square of (2) is equal to 1 minus the square of (1), and its di-

rection is normal to the plane of the product angle.* j
'?

Example. Let fi = 307/45 and y = 607/30. Then

cos fiy = cos 45 cos 30 + sin 45 sin 30 cos 30,

and sin fiy . fiy = Vfiy ;

but fi = cos 45 i+ sin 45 cos 30/+ sin 45 sin 30 k,

and y = cos 30 i+ sin 30 cos 6oj-\- sin 30 sin 6o k
;

therefore

Vfiy = j
sin 45 cos 30 sin 30 sin 6o

sin 45 sin 30 sin 30 cos6o Sz"

-{- I
sin 45 sin 30 cos 30 cos 45 sin 30 sin6ojy

+ j
cos 45 sin 30cos6o sin 45 cos 30cos 30!^.

Quotient of Two Spherical Versors. The reciprocal of a

given versor is derived by changing the sign of the index
;

y~
c

is the reciprocal of y
c
. As fi

b = cos b -f- sin b . fi
n/

*, and

y~
c = cos c sin c . y

9
*,

fi
h

y~
c = cos b cos c -f- sin b sin c cos fiy

+ jcos c sin b , fi cosb sin c . y -\- sin b sin c sin fiy . fiy [

ff/a-

s
Product of Three Spherical Versors. Let

aa denote the versor PQ, fi
b the versor QR,

and y
c the versor RS

;
then aa

fi
b

y
c denotes

PS. Now aa
fi

h

y
c p"

= (cos a + sin a . o^'Xcos b+ sin , /f
/a

)(cos c + sin c . y
n/
>)

= cos # cos b cos
(1)

4- cos a cos sin c. y
w'%

-\- cos a cos sin . fi
n/*

-f- cos cos ^ sin . a:
a

(2)

+ cos a sin sin c .^y71 + cos b sin sin <r. aw/yw/t

+ cos c sin a smb. an/
*fi

n/*
(3)

*
Principles of Elliptic and Hyperbolic Analysis, p. 2.
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+ sin a sin b sin c . a *fi y . (4)

The versors in (3) are expanded by the rule already ob-

tained, namely,

0*/y/s = _ cos py _ sin fly . -pp*\

The versor of the fourth term is

a"/*jf/y/* = -
(cos a/3+ sin a/3 . afiT

/%
)y

w/t

= cos a/3 . y
w/

*-{-sin a/3 cos a/3y-\-sin a/3 sin ajjSy . a/3y
n/

*.

Now sin ar/? sin a/3y . ar/?;/
= cos ay . /3 cos /?;/ . a- (p. 45 1),

hence the last term of the product, when expanded, is

sin a sin b sin c
{

cos a-/? . y
9/* + cos o-r .

*/

cos /?>/ . a U +
f
cos~o~/3y \

.

Hence

cos aa
/3

b

y
c = cos # cos b cos cos a sin ^ sin c cos /ty'

cos b sin a: sin cos ay cos c sin a sin cos a/3

+ sin # sin b sin sin ar/? cos afiy,

and, letting Sin denote the directed sine,

Sin aa
/3

b

y
c = cos a cos b sin r .

;/ -f- cos # cos r sin b . /?

-j- cos cos <; sin a . a cos a sin sin r sin /3y . /?;/

cos b sin tf sin c sin ory . a-;/

cos c sin # sin b sin a-/? . afi

sin # sin $ sin^lcosa-/?. ;/ cos or;/ . /? |
cos /3y . o'J.*

Extension of the Exponential Theorem to Spherical Trigo-

nometry. It has been shown (p. 458) that

cos /3
b

y
c = cos b cos c sin b sin c cos /3y

and

(sin /3
b

y
c

)
v/' = cos c sin b . y^

7' + cos sin <: . y
n/l

sin sin c sin /?/ . /ty^
8

.

L &
,

*" &
.Now cos = 1 r -h r ^t + etc.

2!
'

4! 6!

* In the above case the three axes of the successive angles are not perfectly-

independent, for the third angle must begin where the second leaves off. But

the theorem remains true when the axes are independent ; the factors are then

quaternions in the most general sense.
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and sin b = b 7-r+ -

j-
etc.

Substitute these series for cos b, sin b, cos c, and sin c in

the above equations, multiply out, and group the homogeneous
terms together. It will be found that

cos /3
b

y
c = I \b

2 + 2bc cos fiy +

+ -\\b
x + 4^V cos

ytf;/ + 6V + 4bc< cos /?r + t*J

_ -L{
8 _L. 6^V cos /?;/ + 15^V

2 + 2oV cos fiy

+ 1 5^V + 6bc* cos J3y + c<\ +. . .,

where the coefficients are those of the binomial theorem, the

only difference being that cos fly occurs in all the odd terms

as a factor. Similarly, by expanding the terms of the sine, we
obtain

(Sin /3
b

y
c

)

n/2 = b . fi
w/* + c . y*f*

- be sin /3y . ffy
n/2

-{b\F/2 + lb*c. y
"/2 + zbc\l?

/i+ c\y"
/2

\

o

_|_ _L-j^ _l.
Fc\ sin /?;/

. fy
n/2

+ -
1-

\b> . /r
/2 + 5^ . /* + io*v . /f

/2

+ 10JV r
ff/2 + 5^

4
.^/2+ c* .//2

1

By adding these two expansions together we get the ex-

pansion for fi
h

y\ namely,

py =1 jr b,^/2

-\-c. y
n/2

-^i\b*+ 2bc(cos Py+ sin fiy . J/'
2

) + ?
\

+ -\\b* + 4^V(cos /?;/ + sin /3y . Jy'
2

) + 6V
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By restoring the minus, we find that the terms on the

second line can be thrown into the form

I

T|i'.f+2&./V
!+^x,

i-

rld.^+ cy'^',

2 !

and this is equal to

i

2

where we have the square of a sum of successive terms. In a

similar manner the terms on the third line can be restored to

3
m fit+ 3jv ,pr

t*+ 3^ u p/y+ <.> t r
s(n/2

)f

I

3!
* Hence

that is, T\\-P + C -Y f

Extension of the Binomial Theorem. We have proved

above that e*w/*sy
w/* = ***/s + <W* provided that the powers

of the binomial are expanded as due to a successive sum, that

is, the order of the terms in the binomial must be preserved.

Hence the expansion for a power of a successive binomial is

given by

j. p* + c . y
w/
*\*
= bn . /3

n/2 + a** . f-^y**

+ -
n ~ TV -

V./^-^/y-fetc.

* At page 386 of his Elements of Quaternions, Hamilton says: "In the

present theory of diplanar quaternions we cannot expect to find that the sum of

the logarithms of any two proposed factors shall be generally equal to the

logarithm of the product ;
but for the simpler and earlier case of coplanar

quaternions, that algebraic property may be considered to exist, with due

modification for multiplicity of value." He was led to this view by not dis-

tinguishing between vectors and quadrantal quaternions and between simul-

taneous and successive addition. The above demonstration was first given in

my paper on "The Fundamental Theorems of Analysis generalized for Space."

It forms the key to the higher development of space analysis.
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Example. Let b = TV and c=^ ft = W//^> V = 6o7/3<A

(& .

** + * . K
ff/2

y
- - J + ^ + 2fc cos /?;/ + 2Msin /a^)**}

= -
(ilo + -h+ -io

cos fiy)
-

^(sin #k)-*
Substitute the calculated values of cos fty and sin fty (page 459).

Prob. 48. Find the equivalent of a quadrantal version round

V~i 1 1

z"-| 7=j ~\ 7=& followed by a quadrantal version round
2 2 V 2 2 r 2

244
Prob. 49. In the example on p. 459 let b = 25 and c = 50 ;

cal-

culate out the cosine and the directed sine of the product angle.

Prob. 50. In the above example calculate the cosine and the

directed sine up to and inclusive of the fourth power of the bino-

mial. (Ans. cos = -9735-)

Prob. 51. Calculate the first four terms of the series when

*> = h,c = ifor, ft
= o/fa Y = ^o7/>!.

Prob. 52. From the fundamental theorem of spherical trigo-

nometry deduce the polar theorem with respect to both the cosine

and the directed sine.

Prob. 53. Prove that if aa
, ft

b
, y

c denote the three versors of a

spherical triangle, then

sin fty _ sin ya _ sin aft

sin a sin b sin c

Art. 10. Composition of Rotations.

A version refers to the change of direction of a line, but a

rotation refers to a rigid body. The composi- B
tion of rotations is a different matter from the

composition of versions.

Effect of a Finite Rotation on a Line. Sup-

pose that a rigid body rotates d radians round

the axis ft passing through the point O, and that

R is the radius-vector from O to some particle.

In the diagram OB represents the axis ft, and

OP the vector R. Draw OK and OL, the rectangular compo-
nents of R.

ftR = (cos 6+ sin 6 . fi
w/
*)rp
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r(cos 6 + sin 6 . f?
/2

)(cos /3p . /3+ sin /3p . /3p/3)

[Chap. IX.

= r{cos/?p./?-|-cos sin ftp . fipfi + sin sin /3p./3p\.

When cos /?p =o, this reduces to

pR = cos 03? + sin 0V(/3R).
The general result may be written

/?^ = S/3R . /?+ cos 0(V/3R)ft+ sin 0V/1.
Note that (VflR)/3 is equal to V(V/SR)fi because S/3R/3 is.

o, for it involves two coincident directions.

Example. Let j3
= It + mj -\-nk, where /* + w 2

-f-
2 = i

and i? = -\-yj-\- zk ; then Sy&tf = lx + wj/ + nz

and

Hence

V^)/J =
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fi**/*ff1*pn is f**f*+*&**$&*
t
which may be expanded

according to the exponential theorem, the successive powers

of the trinomial being formed according to the multinomial

theorem, the order of the factors being preserved.

Composition of Finite Rotations round Axes which Inter-

sect. Let /3 and y denote the two axes in space round which

the successive rotations take place, and let /3
b denote the first

and y
c the second. Let ft

b X y
c denote the single rotation

which is equivalent to the two given rotations applied in

succession
;
the sign X is introduced to distinguish from the

product of versors. It has been shown in the preceding para-

graph that

and as the result is a line, the same principle applies to the

subsequent rotation. Hence

y
c

(/3
b

p) = y-</\fi-*/*p/*0"/*)y</

=
(y-</*fi-

b

/*)p/\/3*/*y
c/2

) ,

because the factors in a product of versors can be associated in

any manner. Hence, reasoning backwards,

/3
b x y

c = {/&*y*)\

Let m denote the cosine of /3
b^2yc

^, namely,

cos b/2 cos c/2 sin b/2 sin c/2, 4fc>
[

and n. v their directed sine, namely,

cos b/2 sin c/2.y
J
\-zos c/2 sin b/2 . (3 sin b/2 sin c/2 sin (3y . /3y;

then fp XY = ^2
tf + 2;/z# . v.

Observation. The expression (fi
b

/*y
e

/*y is not, as might be

supposed, identical with fi
b

y
c

. The former reduces to the lat-

ter only when fi and y are the same or

opposite. In the figure fi
b
is represented

by PQ, y
c

by QR, j5
b

y
c

by PR, fil*yl* by

ST, and (f3
b/y/2Y by SU, which is twice

ST. The cosine of SU differs from the

cosine of PR by the term (sin b/2 sin c/2 sin fiyf. It is

evident from the figure that their axes are also different.
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Corollary. When b and c are infinitesimals, cos /3
bXy c

i,

and Sin /3
b X y

c = b . ft -\- c . y, which is the parallelogram rule

for the composition of infinitesimal rotations.

Prob. 54. Let fi
= 3^7/45, # = fr/3> and R = 2/- 3/+ 4^ ;

calculate ffR.

Prob. 55. Let /? = 907/90, # = tt/4 ,
i? = - /+ 2/

-
3 ;

calculate fi
e
R.

Prob. 56. Prove by multiplying out that fi"
h
/*pF/*fi

bf* =
\/3

b
p}

w
/';

Prob. 57. Prove by means of the exponential theorem that

y~
c
fi

b

y
c has an angle b, and that its axis is y*fi.

Prob. 58. Prove that the cosine of (yffVy/2)
9
differs from the

cosine of fi
b

y
c

by (sin - sin sin fiy) . .

Prob. 59. Compare the axes of (yff*/y*/*)
9
and /3

b
y

e
.

Prob. 60. Find the value of ft
b X y when /3 ="oV/9o and

y ="^7/90.
Prob. 61. Find the single rotation equivalent to *>/ Xj n/2 X >&*/*.

Prob. 62. Prove that successive rotations about radii to two

corners of a spherical triangle and through angles double *of those

of the triangle are equivalent to a single rotation about the radius

to the third corner, and through an angle double of the external

angle of the triangle.
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Chapter X.

PROBABILITY AND THEORY OF ERRORS.

By Robert S. Woodward,
Professor of Mechanics in Columbia University.

Art. 1. Introduction.

It is a curious circumstance that a science so profoundly
mathematical as the theory of probability should have origi-

nated in the games of chance which occupy the thoughtless

and profligate.* That such is the case is sufficiently attested

by the fact that much of the terminology of the science and

many of its familiar illustrations are drawn directly from the

vocabulary and the paraphernalia of the gambler and the trick-

ster. It is somewhat surprising, also, considering the antiquity

of games of chance, that formal reasoning on the simpler

questions in probability did not begin before the time of Pascal

and Fermat. Pascal was led to consider the subject during the

year 1654 through a problem proposed to him by the Chevalier

de Mere, a reputed gambler.f The problem in question is

known as the problem of points and may be stated as follows :

two players need each a given number of points to win at a

certain stage of their game ;
if they stop at this stage, how should

the stakes be divided ? Pascal corresponded with his friend

Fermat on this question ;
and it appears that the letters which

passed between them contained the earliest distinct formulation

of principles falling within the theory of probability. These

* The historical facts referred to in this article are drawn mostly from Tod-

hunter's History of the Mathematical Theory of Probability from the time of

Pascal to that of Laplace (Cambridge and London, 1865).

f
" Un probleme relatif aux jeux de hasard, propose aun austere janseniste

par un homme du monde, a ete l'origine du calcul des probability.
"

Poisson,

Recherches surla Probability des Jugements (Paris, 1837).
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acute thinkers, however, accomplished little more than a correct

start in the science. Each seemed to rest content at the time

with the approbation of the other. Pascal soon renounced

such mundane studies altogether ;
Fermat had only the scant

leisure of a life busy with affairs to devote to mathematics;

and both died soon after the epoch in question, Pascal in

1662, and Fermat in 1665.

A subject which had attracted the attention of such dis-

tinguished mathematicians could not fail to excite the interest

of their contemporaries and successors. Amongst the former

Huygens is the most noted. He has the honor of publishing

the first treatise* on the subject. It contains only fourteen

propositions and is devoted entirely to games of chance, but it

gave the best account of the theory down to the beginning of

the eighteenth century, when it was superseded by the more elab-

orate works of James Bernoulli,f Montmort,J and De Moivre.

Through the labors of the latter authors the mathematical

theory of probability was greatly extended. They attacked,

quite successfully in the main, the most difficult problems;
and great credit is due them for the energy and ability dis-

played in developing a science which seemed at the time to

have no higher aim than intellectual diversion.) Their names,

undoubtedly, with one exception, that of Laplace, are the most

important in the history of probability.

Since the beginning of the eighteenth century almost every

mathematician of note has been a contributor to or an expos-

itor of the theory of probability. Nicolas, Daniel, and John

Bernoulli, Simpson, Euler, d'Alembert, Bayes, Lagrange, Lam-

bert, Condorcet, and Laplace are the principal names which

figure in the history of the subject during the hundred years

*De Ratiociniis in Ludo Alese, 1657.

f Ars Conjectandi, 1713.

JEssai d'Analyse sur les Jeux de Hazards, 1708.

The Doctrine of Chances, 1718.

I
Todhunter says of Montmort, for example, "In 1708 he published his

work on Chances, where with the courage of Columbus he revealed a new world

to Mathematicians."
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ending with the first quarter of the present century. Of the

contributions from this brilliant array of mathematical talent,

the Theorie Analytique des Probabilites of Laplace is by far

the most profound and comprehensive. It is, like his Me-

canique Celeste in dynamical astronomy, still the most elabo-

rate treatise on the subject. An idea of the grand scale of the

work in its present form* maybe gained by, the facts that the

non-mathematical introductionf covers about one hundred and

fifty quarto pages ;
and that, in spite of the extraordinary

brevity of mathematical language, the pure theory and its ac-

cessories and applications require about six hundred and fifty

pages.

From the epoch of Laplace down to the present time the

extensions of the science have been most noteworthy in the

fields of practical applications, as in the adjustment of obser-

vations, and in problems of insurance, statistics, etc. Amongst
the most important of the pioneers in these fields should

be mentioned Poisson, Gauss, Bessel, and De Morgan. Nu-

merous authors, also, have done much to simplify one or an-

other branch of the subject and thus bring it within the range

of elementary presentation. The fundamental principles of

the theory are, indeed, now accessible in the best text-books

on algebra : and there are many excellent treatises on the pure

theory and its various applications.

Of all the applications of the doctrine of probability none

is of greater utility than the theory of errors. In astronomy,

geodesy, physics, and chemistry, as in every science which at-

tains precision in measuring, weighing, and computing, a

knowledge of the theory of errors is indispensable. By the aid

of this theory the exact sciences have made great progress dur-

*The form of the third edition published in 1820, and of Vol. VII of the

complete works of Laplace recently republished Hinder the auspices of the

Academie des Sciences by Gauthier-Villars. This Vol. VII bears the date 1886.

f
" Cette Introduction," writes Laplace, "est le developpement d'une Lecon

sur les Probabilites, que je donnai en 1795, aux Ecoles Normales, ou je fus ap-

pele comme professeur de Mathematiques avec Lagrange, par un decret de la

Convention nationale."
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ing the present century, not only in the actual determination

of the constants of nature, but also in the fixation of clear

ideas as to the possibilities of future conquests in the same di-

rection. Nothing, for example, is more satisfactory and in-

structive in the history of science than the success with which

the unique method of least squares has been applied to the

problems presented by the earth and the other members of the

solar system. So great, in fact, are the practical value and

theoretical importance of the method of least squares, that it is

frequently mistaken for the whole theory of errors, and is

sometimes regarded as embodying the major part of the doc-

trine of probability itself.

As may be inferred from this brief sketch, the theory of

probability and its more important applications now constitute

an extensive body of mathematical principles and precepts.

Obviously, therefore, it will be impossible within the limits of

a single chapter of this volume to do more than give an out-

line of the salient features of the subject. It is hoped, how-

ever, in accordance with the general plan of the volume, that

such outline will prove suggestive and helpful to those who

may come to the science for the first time, and also to those

who, while somewhat familiar with the difficulties to be over-

tome, have not acquired a working knowledge of the subject.

Effort has been made especially to clear up the difficulties of

the theory of errors by presenting a somewhat broader view of

the elements of the subject than is found in the standard

treatises, which confine attention almost exclusively to the

method of least squares. This chapter stops short of that

method, and seeks to supply those phases of the theory which

are either notably lacking or notably erroneous in works

hitherto published. It is believed, also, that the elements here

presented are essential to an adequate understanding of the

well-worked domain of least squares.*

*The author has given a brief but comprehensive statement of the method
of least squares in the volume of Geographical Tables published by the Smith-

sonion Institution, 1894,
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Art. 2. Permutations.

The formulas and results of the theory of permutations

and combinations are often needed for the statement and so-

lution of problems in probabilities. This theory is now to be

found in most works on algebra, and it will therefore suffice

here to state the principal formulas and illustrate their mean-

ing by a few numerical examples.

The number of permutations of ft things taken r in a group

is expressed by the formula

(n)r
= n{n - \){n

-
2) . . . (

- r + i). (i)

Thus, to illustrate, the number of ways the four letters a, b,

c
y
d can be arranged in groups of two is 4 . 3 = 12, and the groups

are

abt bay ac, ca, ad
f

da
} be, cb, bd> db, cd

y
dc

Similarly, the formula gives for

ft ss 3 and r = 2, (3),
= 3.2 =6,

n = 7
" r=3, (7) 3

= 7.6.5 =210,
n 10 " r = 6y (io) 6

= 10.9.8.7.6. 5
= 151200.

The results which follow from equation (1) when n and r

do not exceed 10 each are embodied in the following table :

Values of Permutations.
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noticed that the last two numbers in each column (excepting
that headed with i) are the same. This accords with the for-

mula, which gives for the number of permutations of n things

in groups of n the same value as for n things in groups of

(n i). It will also be remarked that the last number in each

column of the table is the factorial, nl, of the number n at the

head of the column. For example, in the column under 7, the

last number is 5040 == 1.2.3.4.5.6.7 = 7!.

The total number of permutations of n things taken singly,

in groups of two, three, etc., is found by summing the numbers

given by equation (1) for all values of r from I to n. Calling

this total or sum S
Pi it will be given by

S> = 2(n) (2)

To illustrate, suppose n = 3, and, to fix the ideas, let the

three things be the three digits 1, 2, 3. Then from the above

table it is seen that Sp = 3 + 6 + 6 = 15 ; or, that the number

of numbers (all different) which can be formed from those dig-

its is fifteen. These numbers are 1, 2, 3 ; 12, 13, 21, 23,.31, 32;

123, 132, 213, 231, 312, 321.

The values of Sp for n = 1, 2, ... 10 are given under the

corresponding columns of the above table. But when n is

large the direct summation indicated by (2) is tedious, if not

impracticable. Hence a more convenient formula is desirable.

To get this, observe that (1) may be written

if r is restricted to integer values between 1 and {n 1), both

inclusive. This suffices to give all terms which appear in the

right-hand member of (2), since the number of permutations

for r = (n 1) is the same as for r = n. Hence it appears

that

^ = *! + T+7^+ .-.^ ryr
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But as n increases, the series by which n ! is here multiplied

approximates rapidly towards the base of natural logarithms ;

that is, towards

^ = 271828184-, log e = 0.4342945.

Hence for large values of n

SP = n\ e, approximately.* (3)

To get an idea of the degree of approximation of (3), sup-

pose n = 9. Then the computation runs thus (see values in

the above table) :

log

9! = 362880 5-559763

e 0.4342945

9!* = 986410 5-9940575

Sp = 986409 by equation (2).

The error in this case is thus seen to be only one unit, or

about one-millionth of Sp.\

Prob. 1. Tabulate a list of the numbers of three figures each

which can be formed from the first five digits 1, . . . 5. How many
numbers can be formed from the nine digits ?

Prob. 2. Is Sp always an odd number for n odd ? Observe

values of Sp in the table above.

Art. 3. Combinations.

In permutations attention is given to the order of arrange-

ment of the things considered. In combinations no regard is

paid to the order of arrangement. Thus, the permutations of

the letters a, b, c, d in groups of three are

(abc) (add) bac bad acb (acd) cab cad

adb adc dab dac bca (bed) cba cbd

bda bde dba dbc cda cdb dca deb

* See Art. 6 for a formula for computing n\ when n is a large number.

f When large numbers are to be dealt with, equations (1)' and (3) are easily

managed by logarithms, especially if a table of values of log (!) is available.

Such tables are given to six places in De Morgan's treatise on Probability in

the Encyclopaedia Metropolitana, and to five places in Shortrede's Tables

(Vol. I, 1849).
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But if the order of arrangement is ignored all of these are

seen to be repetitions of the groups enclosed in parentheses,

namely, (abc)> (add), (acd), (bed). Hence in this case out of

twenty-four permutations there are only four combinations.

A general formula for computing the number of combina-

tions of n things taken in groups of r things is easily derived.

For the number of permutations of n things in groups of r is

by (i) of Art. 2

(n) r = n(n \)(n 2) ...( r + i) J

and since each group of r things gives 1 . 2. 3 . . ,_r = r! per-

mutations, the number of combinations must be the quotient

of (n)r by r\. Denote this number by C(ii) r . Then the gen-
eral formula is

C(n)r = (-)(" -*)
;(-'+ (I)

This formula gives, for example, in the case of the four let-

ters a, b, c, d taken in groups of three, as considered above,

Multiply both numerator and denominator of the right-hand

member of (1) by (n r)\ The result is

flW** r\(n-r) !
' ^

which shows that the number of combinations of n things in

groups of r is the same as the number of combinations of n

things in groups of (n r). Thus, the number of combina-

tions of the first ten letters a, b, c . . ,j in groups of three or

seven is

10!

3
f

.7*
= 120.

The following table gives the values C(n) r for all values of

n and r from 1 to 10.

The mode of using this table is evident. For example, the

number of combinations of eight things in sets of five each is

found on the fifth line of the column headed 8 to be 56.
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The second member of this equation is evidently equal to

(i + lY * Hence

Sc =2C(n) r = 2-i. (3)

The values of Sc for values of n and r from I to 10 are given

under the corresponding columns of the above table.

Prob. 3. How many different squads of ten men each can be

formed from a company of 100 men ?

Prob. 4 How many triangles are formed by six straight lines

each of which intersects the other five?

Prob. 5. Examine this statement :

" In dealing a pack of cards

the number of hands, of thirteen cards each, which can be produced
is 635 013 559 600. But in whist four hands are simultaneously held,

and the number of distinct deals . . . would require twenty-eight

figures to express it."*

Prob. 6. Assuming combination always possible, and disregarding

the question of proportions, find how many different substances

could be produced by combining the seventy-three chemical ele-

ments.

Art. 4. Direct Probabilities.

If it is known that one of two events must occur in any
trial or instance, and that the first can occur in a ways and the

second in b ways, all of which ways are equally likely to hap-

pen, then the probability that the first will happen is expressed

mathematically by the fraction a/(a-\-b), while the probability

that the second will happen is b/(a + b). Such events are said

to be mutually exclusive. Denote their probabilities by p and

q respectively. Then there result

the last equation following from the first two and being the

mathematical expression for the certainty that one of the two

events must happen.

Thus, to illustrate, in tossing a coin it must give
" head "

or
" tail" ; a = b = I, and p q = 1/2. Again, if an urn contain

a 5 white and b = 8 black balls, the probability of drawing

*
Jevons, Principles of Science, New York, 1874, p. 217.
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a white ball in one trial is p = 5/13 and that of drawing a

black one q = 8/13.

Similarly, if there are several mutually exclusive events

which can occur in a, b, c. , . ways respectively, their probabil-

ities/, q, r . . . are given by
a b c

P = a+6+c+. .

' q ~~

a+b+c+. . .

'
T ~

a +b+c-\-. ..
'

(2)

For example, if an urn contain a=4 white, b = 5 black,

and <: = 6 red balls, the probabilities of drawing a white, black,

and red ball at a single trial are ^ = 4/15, ^=5/15, and

r = 6/15, respectively.

Formulas (1) and (2) may be applied to a wide variety of

cases, but it must suffice here to give only a few such. As a

first illustration, consider the probability of drawing at random

a number of three figures from the entire list of numbers which

can be formed from the first seven digits. A glance at the

table of Art. 1 shows that the symbols of formula (1) have in

this case the values #=2io, and # + =13699. Hence

b = 13489, and / = 210/13699 ;
that is, the probability in ques-

tion is about 1/65.

Secondly, what is the probability of holding in a hand of

whist all the cards of one suit ? Formula (1) of Art. 3 shows

that the number of different hands of thirteen cards each which

may be formed from a pack of fifty-two cards is

52. 51. 50... 402 i ? !L_ _6350I3 559600,
I . 2 . 3 ... 13

JD D DDy *

and the probability required is the reciprocal of this number.

The probability against this event is, therefore, very nearly

unity.

Thirdly, consider the probabilities presented by the case of

an urn containing 4 white, 5 black, and 6 red balls, from which

at a single trial three balls are to be drawn. Evidently the

triad of balls drawn may be all white, all black, all red, partly

white and black, partly white and red, partly black and red, or
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one each of the white, black, and red. There are thus seven

different probabilities to be taken into account. The theory

of combinations shows (see equation (i), Art. 3) that the total

number of

4.3.2
White triads

Black triads

Red triads

White and black triads

White and red triads

Black and red triads

White, black, and red triads

I .
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Art. 5. Probability of Concurrent Events.

If the probabilities of two independent events are p x
and

p respectively, the probability of their concurrence in any

single instance is pfx Thus, suppose there are two urns

U
x
and U the first of which contains a

x
white and b

x
black

balls, and the second a
%
white and b

t
black balls. Then the

probability of drawing a white ball from U
x
is p x

=s aj(a x -\- b
x )>

while that of drawing a white ball from U9 is/, = ^
2/(^a+ &,)

The total number of different pairs of balls which can be formed

from the entire number of balls is (a x + b^(a% + b
t).

Of these

pairs a
x
a

%
are favorable to the concurrence of white in simul-

taneous or successive drawings from the two urns. Hence the

probability of a concurrence of

white with white = a
xaj(a x -f- bx\a% + A,),

white with black = {a xb^-\- ajb x)/{a x + b
x)(a9 + ^

2)>

black with black = b
xbj{a x + b

x)(a2 -f &,),

and the sum of these is unity, as required by equations (2) of

Article 4.

In general, if/,, p2 , A denote the probabilities of several

independent events, and P denote the probability of theii

concurrence,
P=AAP*-- (1)

To illustrate this formula, suppose there is required the

probability of getting three aces with three dice thrown simul-

taneously. In this case/, =A =A = l/& an d

p=(i/6y= 1/2 16.

Similarly, if two dice are thrown simultaneously the proba-

bility that the sum of the numbers shown will be 1 1 is 2/36;

and the probability that this sum 11 will appear in two succes-

sive throws of the same pair of dice is 4/36.36.

The probability that the alternatives of a series of events

will concur is evidently given by

Q = M& ... (1
- A) = (1

- A)d - A)(i -A). (2)

Thus, in the case of the three dice mentioned above, the

probability that each will show something other than an ace is
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qx qi =zqi
= 5/6, and the probability that they will concur in

this is Q 125/216.

Many cases of interest occur for the application of (1) and

(2). One of the most important of these is furnished by suc-

cessive trials of the same event. Consider, for example, what

may happen in n trials of an event for which the probability

is p and against which the probability is q. The probability

that the event will occur every time \s p
n

. The probability that

the event will occur (n 1) times in succession and then fail is

p
n ~ l

q. But if the order of occurrence is disregarded this last

combination may arrive in n different ways ; so that the prob-

ability that the event will occur (n 1) times and fail once is

np
n ~ 1

q. Similarly, the probability that the event will happen

( 2) times and fail twice is \n(ii i)p~
n2
q*; etc. That is,

the probabilities of the several possible occurrences are given by
the corresponding terms in the development of (/ -j- q)

n
.

By the same reasoning used to get equations (2) of Art.

3 it may be shown that the maximum term in the expansion

of (p -\- q)
n

is that in which the exponent ;;/, say, of q is

the whole number lying between (n-^ \)q 1 and (n -f- i)q.

In other words, the most probable result in n trials is the

occurrence of the event {n m) times and its failure m
times. When n is large this means that the most probable of

all possible results is that in which the event occurs n nq
= n(i q) = np times and fails nq times. Thus, if the event

be that of throwing an ace with a single die the most probable

of the possible results in 600 throws is that of 100 aces and

500 failures.

Since q
n

is the probability that the event will fail every time

in n trials, the probability that it will occur at least once in n

trials is I q
n

. Calling this probability rt

*

r= i-2= j -(1 -/)*. (3)

If r in this equation be replaced by 1/2, the corresponding

value of n is the number of trials essential to render the

* See Poisson's Probability des Jugements, pp. 40, 41.
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chances even that the event whose probability is/ will occur

at least once. Thus, in this case, the value of n is given by
log 2

log(i-'
This shows, for example, if the event be the throwing of double

sixes with two dice, for which / = 1/36, that the chances are

even (r = 1/2) that in 25 throws (n = 24.614 by the formula)

double sixes will appear at least once.

Equation (3) shows that however small/ may be, so long as

it is finite, n may be taken so large as to make r approach in-

definitely near to unity ;
that is, n may be so large as to render

it practically certain that the event will occur at least once.

When n is large

.
n(n 1) . n(n i)(n 2) ,

(1 -py = i -nP + K

i 2 V v

lt ;\ 3
y + ..

= I np -\- 1.2 1.2.3'
= e~np approximately.

Thus an approximate value of r is

r = 1 - e
~ n

>, \oge = 0.4342495. (4)

This formula gives, for example, for the probability of drawing:

the ace of spades from a pack of fifty-two cards at least once in

104 trials r = 1 e~
2 = 0.865, while the exact formula (3)

gives 0.867.

Similarly, the probability of the occurrence of the event at

least t times in n trials will be given by the sum of the terms

of (/ -f- Of from P
n UP to tnat m Pt

^
n ~ t

inclusive. This proba-

bility must be carefully distinguished from the probability that

the event will occur t times only in the n trials, the latter being'

expressed by the single term in /^n
~'.

Prob. 9. Compare the probability of holding exactly four aces in*

five hands of whist with the probability cf folding at least four aces;

in the same number of hands.

Prob. 10. What is the probability of an event if the chances are

even that it occurs at least once in a million trials? See equation (4).
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Art. 6. Bernoulli's Theorem.

Denote the exponents of/ and q in the maximum term of

(p -f- q)
n
by yu and in respectively, and denote this term by T.

Then
n(n i)0 2) . . . O + i) n !

r= -
r >y = -; ./v*- (

i
)

As shown in Art. 5, M in this formula is the greatest whole

number in (n -f- i)A and m the greatest whole number in

(n -f- x )^ so tnat wnen ^ is large > M an<^ ^ are sensibly equal

to np and nq respectively.

The direct calculation of T by (1) is impracticable when n

is large. To overcome this difficulty the following expression

is used:*

,! = ,W^(i+^ + ^+...). (2)

log e = 0.4342495, log 2?t = 0.7981799.

This expression approaches nne~n ^2nn as a limit with the

increase of n, and in this approximate form is known as Stir-

ling's theorem. Although a rude approximation to n ! for

small values of n this theorem suffices in nearly all cases

wherein such probabilities as T are desired. Making use of

the theorem in (1) it becomes

T^m
,

l

. (3)

That this formula affords a fair approximation even when

n is small is seen from the case of a die thrown 12 times. The

probability that any particular face will appear in one throw is

/ = 1/6, whence q = 5/6; and the most probable result in 12

throws is that in which the particular face appears twice and

fails to appear ten times. The probability of this result com-

puted from (3) is 0.309, while the exact formula (1) gives 0.296.

The probability that the event will occur a number of times

* This expression is due to Laplace, Theorie Analytique des Probabilities.

See also De Morgan's Calculus, pp. 600-604.
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comprised between (/* a) and
(ju -j- a) in n trials is evidently-

expressed by the sum of the terms in (p -j- q)
n

for which the

exponent of p has the specified range of values. Calling this

probability R, putting

ja
= up -f- u, and m = nq u,

and using Stirling's theorem (which implies that n is a large

number),*

^27tnpq
x npi \ nq/

very nearly ;
and the summation is with respect to u from

u = a to u = + a. But expansion shows that the natural

logarithm of the product of the two binomial factors in this

equation is approximately if/2npq. Hence

R = 2
'

p-^Mi
;

V27tnpq

and, since n is supposed large, this may be replaced by a definite

integral, putting

Thus

dz = i/Y2npq, and z
i = ul

/2npq.

+ a/ \/%npq a/ Vzitpq

This equation expresses the theorem of James Bernoulli,

given in his Ars Conjectandi, published in 171 3.

The value of the right-hand member of (4) varies, as it

should, between o and 1, and approaches the latter limit rap-

idly as z increases. Thus, writing for brevity

?/'"

* See Bertrand, Calcul des Probability, Paris, 1889, for an extended discus-

sion of the questions considered in this Article.
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the following table shows the march of the integral :

z
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diminished so long as the ratio of white to black balls is kept

constant. Make these numbers the same for the two urns.

Thus let the first contain 9 white and 15 black, and the second

8 white and 16 black
;
whence the above probabilities may be

written 1/2 x 9/24 and 1/2 X 8/24. It is now seen that there

are (9 -f- 8) cases favorable to the production of a white ball,

each of which has the same antecedent probability, namely, 1/2.

Since the fact that a white ball was drawn excludes considera-

tion of the black balls, the probability that the white ball came

from U
x

is 9/17 and that it came from cT, is 8/17 ;
and the sum

of these is unity, as it should be.

To generalize this result, let there be m causes, Clt Cv . . . Cm .

Denote their direct probabilities by qv q^... qm \
their antecedent

probabilities by r r . . . rm ;
and their resultant probabilities

on the supposition of separate existence by A>A> A-
That is,

A =
?ir i> A = qs .../ = qmTm- (0

Let D be the common denominator of the right-hand mem-

bers in (1), and denote the corresponding numerators of the

several fractions by s
z ,

s . . . sm . Then

A = sJD, A = */A -../ = sJD ;

and it is seen that there are in all {sx + s% -f- . . . sm) equally

possible cases, and that of these s
t
are favorable to Clf s^ to

C9i . . . Hence, if P
lt
P . . . Pm denote the probabilities of

the several causes on the supposition of their coexistence,

P. = *A*i + s> + - *m)
=AAA +A + . . . A)-

Thus in general

P
x
= A/^A P> = PJ2P, ...Pm = pm/2p. (2)

To illustrate the meaning of these formulas by the above

concrete case of the urns it suffices to observe that

for Ult qx
= 3/8 and r, = 1/2,

for U
it 4, = 1/3 and rt

= 1/2 ;

whence p x
= 3/16, p%

= 1/6, A +A = l 7/tf> J

and P
1 =9/i7, ^=8/17.

As a second illustration, suppose it is known that a white
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ball has been drawn from an urn which originally contained in

balls, some of them being black, if all are not white. What is

the probability that the urn contained exactly n white balls?

The facts are consistent with m different and equally probable

hypotheses (or causes), namely, that there were I white and

(tn i) black balls, 2 white and {in 2) black balls, etc.

Hence in (1), q1
= g2

= . . . = I, and

px
= \/m, p%

= 2/m, . . . pn = n/m, .../= m/m.

Thus 2p= (l/2)(#*+l),
2n

and />,=A/S>= W(W+I ).

This shows, as it evidently should, that n m is the most

probable number of white balls in the urn. The probability

for this number is Pm = 2/{m + 1), which reduces, as it ought,

to I for m I.

Formulas (1) and (2) may also be applied to the problem of

estimating the probability of the occurrence of an event from

the concurrent testimony of several witnesses, Xlt
X . . .

Denote the probabilities that the witnesses tell the truth by

x
x
xv . . . Then, supposing them to testify independently,

the probability that they will concur in the truth concerning

the event is x
xx^ . . .

;
while the probability that they will con-

cur in the only other alternative, falsehood, is (1 ^(1 ;r
a)

. . .

The two alternatives are equally possible. Hence by equations

(1) and (2)

/, = x
x
x

% . . ., p%
= (I

- x$\ - x,) . . .,

p
x

*
x

*

1 x
1
x

%
... + (i-x l)(i -*,)' M

^ x
xx^ . . . + (1 0(i x%) . . .'

P
1 being the probability for and P

Q
that against the event.

To illustrate (3), if the chances are 3 to 1 that X, tells the

truth and 5 to 1 that X^ tells the truth, x, = 3/4, x^ 5/6, and

P-
x 15/16; or, the chances are 15 to 1 that an event occurred

if they agree in asserting that it did.*

* For some interesting applications of equations (3) see note E of Appendix

to the Ninth Bridgewater Treatise by Charles Babbage (London, 1838).
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It is of theoretical interest to observe that if xlt x . . . m
(3) are each greater than 1/2, Px approaches unity as the

number of witnesses is indefinitely increased.

Prob. 13. The groups of numbers of one figure each, two figures

each, three figures each, etc., which it is possible to form from the

nine digits 1, 2, ... 9 are printed on cards and placed severally in

nine similar urns. What is the probability that the number 777 will

be drawn in a single trial by a person unaware of the contents of

the urns ?

Prob. 14. How many witnesses whose credibilities are each 3/4
are essential to make P

x
== 0.999 m equation (3) ?

Art. 8. Probabilities of Future Events.

Equations (2) of Art. 7 may be written in the following

manner: . ,

p x A
' * *

pm 2p'
{ >

If p lt /,... pm are found by observation, Pt , Pti . . . Pm will ex-

press the probabilities of the corresponding causes or their

effects. When, as in the case of most physical facts, the num-

ber of causes and events is indefinitely great, the value of any

/ or P in (1) becomes indefinitely small, and the value of 2p
must be expressed by means of a definite integral. Let x de-

note the probability of any particular cause, or of the event to

which it gives rise. Then, supposing this and all the other

causes mutually exclusive, (1 x) will be the probability

against the event. Now suppose it has been observed that in

(in + n) cases the event in question has occurred m times and

failed n times. The probability of such a concurrence is, by
Art. 5, cx

m
{\ x)

n
y
where c is a constant. Since x is unknown,

it may be assumed to have any value within the limits o and 1 ;

and all such values are a priori equally possible. Put

y = cxm{\ X)
n

.

Then evidently the probability that x will fall within any as-

signed possible limits a and b is expressed by the fraction

a 1

JydxJJ ydx\
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so that the probability of any particular x is given by

fxM(i x)
udx

This may be regarded as the antecedent probability of the

cause or event in question.

What then is the probability that in the next {r -f- s) trials

the event will occur r times and fail s times, if no regard is had

of the order of occurrence? If x were known, the answer

would be by Arts. 2 and 5

*$**-* (3)

But since x is restricted only by the condition (2), the required

probability will be found by taking the product of (2) and (3)

and integrating throughout the range of x. Thus, calling the

required probability Q,
1

fxm+r
(i x)

n+sdx

(r+s)l t -
Q =^V-, '

(4)r\s\
I xm{i x)

ndx

The definite integrals which appear here are known as Gamma
functions. They are discussed in all of the higher treatises on

the Integral Calculus. Applying the rules derived in such

treatises there results *

(r + s)l(m + r)l{n + s)\(m + n+i)\
y

r\s\m\n\(tn-\- n -\- r -\- s +1)!
* '

If regard is had to the order of occurrence of the event
;

that is, if the probability required is that of the event happen-

ing r times in succession and then failing s times in succession,

* It is a remarkable fact that formula (5) is true without restriction as to

values of m, n, r, s. The formula may be established by elementary considera-

tions, as was done by Prevost and Lhuilier, 1795. See Todhunter's History of

he Theory of Probability, pp. 453-457-
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the factor (r -f- s) \/r \s ! in (3), (4), (5) must be replaced by

unity.

To illustrate these formulas, suppose first that the event

has happened m times and failed no times. What is the prob-

ability that it will occur at the next trial ? In this case (4)

gives

Q = fxm+1dx/ Cxmdx = (m -\- \)/{m + 2).

When m is large this probability is nearly unity. Thus, the

sun has risen without failure a great number of times m ;
the

probability that it will rise to-morrow is

(
I + i)(I+ y'= I+ - +

which is practically 1.

Secondly, suppose an urn contains white and black balls in

an unknown ratio. If in ten trials 7 white and 3 black balls

are drawn, what is the probability that in the next five trials

2 white and 3 black balls will be drawn ? The application of

{5) supposes the ratio of the white and black balls in the urn

to remain constant. This will follow if the balls are replaced

after each drawing, or if the number of balls in the urn is sup-

posed infinite. The data give

m = 7, n = 3, r = 2, s = 3,

m-{-r = g, n -\- s = 6, ^ + ^ = 5, *0 + #+l = ll,

m -\- n -{- r -\- s ~\- 1 = 16.

Thus by (5) .

S\g\6lii\G=
2! 3 !7! 3 !i6!

= 3o/91 -

Suppose there are two mutually exclusive events, the first

of which has happened m times and the second n times in

*n-\-n trials. What is the probability that the chance of the

occurrence of the first exceeds 1/2 ? The answer to this ques-

tion is given directly by equation (2) by integrating the nume-

rator between the specified limits of x. That is,
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i

fx
m
{\ xfdx

P~~, (6)

fx
m
(i xfdx

o

Thus, if m = I and k = o, P = 3/4 ;
or the odds are three to

one that the event is more likely to happen than not. Simi-

larly, if the event has occurred m times in succession,

P= 1 -(i/2)
w+1

,

which approaches unity rapidly with increase of n.

Art. 9. Theory of Errors.

The theory of errors may be defined as that branch of math-

ematics which is concerned, first, with the expression of the re-

sultant effect of one or more sources of error to which com-

puted and observed quantities are subject ; and, secondly, with

the determination of the relation between the magnitude of

an error and the probability of its occurrence. In the case of

computed quantities which depend on numerical data, such as

tables of logarithms, trigonometric functions, etc., it is usually

possible to ascertain the actual values of the resultant errors.

In the case of observed quantities, on the other hand, it is not

generally possible to evaluate the resultant actual error, since

the actual errors of observation are usually unknown. In either

Case, however, it is always possible to write down a symbolical

expression which will show how different sources of error enter

and affect the aggregate error
;
and the statement of such an

expression is of fundamental importance in the theory of errors.

To fix the ideas, suppose a quantity Q to be a function of

several independent quantities x, y, z . . .; that is,

Q=f{*>y, *)
and let it be required to determine the error in Q due to errors

in x, y, z . . . Denote such errors by A Q, Ax, Ay, Az . . .

Then, supposing the errors so small that their squares, prod-

ucts, and higher powers may be neglected, Taylor's series gives
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This equation may be said to express the resultant actual error

of the function in terms of the component actual errors, since

the actual value of AQ is known when the actual errors of

x, y, z . . . are known. It should be carefully noted that the

quantities x, y, z . . . are supposed subject to errors which are

independent of one another. The discovery of the independent

sources of error is sometimes a matter of difficulty, and in general

requires close attention on the part of the student if he would

avoid blunders and misconceptions. Every investigator in work

of precision should have a clear notion of the error-equation of

the type (i) appertaining to his work
;
for it is thus only that

he can distinguish between the important and unimportant
sources of error.

Prob. 15. Write out the error-equation in accordance with (1)

for the function Q xyz -\- x
%

log (y/z).

Prob. 16. In a plane triangle a/b = sin ^4/sin B. Find the error

in a due to errors in b, A, and B.

Prob. 17. Suppose in place of the data of problem 16 that the

angles used in computation are given by the following equations :

^=^,+1(180-^- B- Q, B = B, + i(i8o
- A-B

x

- C
t ),

where A it
B

t ,
C

x
are observed values. What then is Aa ?

Prob. 18. If w denote the weight of a body and r the radius of

the earth, show that for small changes in altitude, Aw/w= 2Ar/r\
whence, if a precision of one part in 500000000 is attainable in com-

paring two nearly equal masses, the effect of a difference in altitude

of one centimeter in the scale-pans of a balance will be noticeable.*

Art. 10. Laws of Error.

A law of error is a function which expresses the relative

frequency of occurrence of errors in terms of their magnitudes.

Thus, using the customary notation, let e denote the magni-

* This problem arose with the International Bureau of Weights and Measures^

whose work of intercomparison of the Prototype Kilogrammes attained a pre-

cision indicated by a probable error of 1/500 000 oooth part of a kilogramme.
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tude o. any error in a system of possible errors. Then the law

of such system may be expressed by an equation of the form

y = K4 (0

Representing e as abscissa and y as ordinate, this equation

gives a curve called the curve of frequency, the nature of which,

as is evident, depends on the form of the function 0. This

equation gives the relative frequency of occurrence of errors in

the system ;
so that if e is continuous the probability of the

occurrence of any particular error is expressed byyde = cp(e)de;

which is infinitesimal, as it plainly should be, since in any con-

tinuous system the number of different values of e is infinite.

Consider the simplest form of 0(e), namely, that in which

0(e) = c
}
a constant. This form of 0(e) obtains in the case of

the errors of tabular logarithms, natural trigonometric func-

tions, etc. In this case all errors between minus a half-unit

and plus a half-unit of the last tabular place are equally likely

to occur. Suppose, to cover the class of cases to which that

just cited belongs, all errors between the limits a and -\- a

are equally likely to occur. The probability of any individual

error will then be cf>(e)de cde, and the sum of all such prob-

abilities, by equation (2), Art. 4, must be unity. That is,

+* -H*

/ <p(e)de = c jde = I. (2)

-a - a

This gives c = 1/20, or by (1) y = i/2a. The curve of fre-

quency in this case is shown in the figure,

AB being the axis of e and OQ that of y.

It is evident from this diagram that if the

errors of the system be considered with

respect to magnitude only, half of them

should be greater and half less than a/2.

This is easily found to be so in the case of

tabular logarithms, etc.

As a second illustration of (1), suppose y and e connected

by the relation^ = c Va2
e
2

,
where a is the radius of a circle,

Q

a .d

A O B
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c a constant, and e may have any value between a and -f- a.

Then the condition
+ a

cjde Va'-e* = I

a

gives c = 2/(0*71). In this, as in the preceding case, <p(-\- e)

0( e), the meaning of which is that positive and negative

errors of the same magnitude are equally likely to occur. It

will be noticed, however, that in the latter case small errors

have a much higher probability than those near the limit a r

while in the former case all errors have the same probability.

In general, when e is continuous 0(e) must satisfy the condi-

tion / (p(e)de = I, the limits being such as to cover the entire

range of values of e. The cases most commonly met with are

those in which 0(e) is an even function, or those in which

0(-|- e)
= 0( e). In such cases, if a denote the limiting

value of e,
+ a a.

f<P{e)de
=

2f<p(e)de
= I. (3)

Art. 11. Typical Errors of a System.

Certain typical errors of a system have received special

designations and are of constant use in the literature of the

theory of errors. These special errors are the probable error,

the mean error, and the average error. The first is that error

of the system of errors which is as likely to be exceeded as

not ;
the second is the square root of the mean of the squares

of all the errors
;
and the third is the mean of all the errors

regardless of their signs. Confining attention to systems in

which positive and negative errors of the same magnitude

are equally probable, these typical errors are defined mathe-

matically as follows. Let

ep
= the probable error,

em= the mean error,

ea = the average error.
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Then, observing (2), of Art. 10,

-ep + ep -\-a

f(p(e)de =J<t>{e)de
=
j*$(e)de =J^(e)de

=
J,

-a -*p +e^

em
*

=y*0(e)eVe,
ea = 2

fcj>(e)ede.

(I)

The student should seek to avoid the very common misap-

prehension of the meaning of the probable error. It is not
" the most probable error," nor " the most probable value of

the actual error"; but it is that error which, disregarding signs,

would occupy the middle place if all the errors of the system

were arranged in order of magnitude. A few illustrations will

suffice to fix the ideas as to the typical errors. Thus, take the

simple case wherein 0(e) = c = i/2a, which applies to tabular

logarithms, etc. Equations (1) give at once

eP
= -a, em = - Vj, ea = -a.

For the case of tabular values, a = 0.5 in units of the last

tabular place. Hence for such values

ep =0.2$, ew =o.29, .-=0.25.
Prob. 19. Find the typical errors for the cases in which the law

of error is 0(e) == cVc? e
2

, 0(e) = c(a^e), <f>(e)=c cos
2

(?re/ 2a);

x being a constant to be determined in each case and e having any
value between a and + a.

Art. 12. Laws of Resultant Error.

When several independent sources of error conspire to pro-
duce a resultant error, as specified by equation (1) of Art. 9,

there is presented the problem of determining the law of the

resultant error by means of the laws of the component errors.

The algebraic statement of this problem is obtained as follows

for the case of continuous errors :

In the equation (1), Art. 9, write for brevity
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and let the laws of error of e, e
xi

e
a , . . . be denoted by 0(e),

<&(,), 2(ea) Then the value of e is given by

=,+*. +.-. (i)

The probabilities of the occurrence of any particular values

of e
xt

e
a ,

. . . are given by I(e,)dfe 1 , 3(
eKe

2 ,
. . .

;
and the

probability of their concurrence is the probability of the cor-

responding value of e. But since this value may arise in an

infinite number of ways through the variations of e
lf

e
a , . . .

over their ranges, the probability of e, or <p(e)de, will be

expressed by the integral of
1 (e- 1)^el a(e- a)afea . . . subject to

the restriction (i). This latter gives e,
= e e

2 e, . . ., and

de
x
= de for the multiple integration with respect to e e . . .

Hence there results

<P(e)de
=

dej*4>
x{e
-

e, e
8
-

. .
.)<f>9(et)d*t . . . ,

or

0(e) = f^e-e,
- e

a
-

. . O&W^v/V.W*. (2)

It is readily seen that this formula will increase rapidly in

complexity with the number of independent sources of error.*

For some of the most important practical applications, how-

ever, it suffices to limit equation (2) to the case of two inde-

pendent sources of error, each of constant probability within

assigned limits. Thus, to consider this case, let e
x vary over

the range a to -\-a, and e
2 vary over the range b to -f- b.

Then by equation (2), Art. 10,

0^) = 1 /(2d), 0,(6.)
=

1/(20).

Hence equation (2) becomes

In evaluating this integral ea must not surpass b and

<?,
= e e3 must not surpass a. Assuming # > b, the limits

of the integral for any value of e = e
x + e

a tying between

(a -f- b) and (a b) are b and + (e + #). This fact is

* The reader desirous of pursuing this phase of the subject should consult

Bessel's Untersuchungen ueber die Wahrscheinlichkeit der Beobachtungsfehler;

Abhandlungen von Bessel (Leipzig, 1876), Vol. II.
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made plain by a numerical example. For instance, suppose.

a = 5 and b = 3. Then (a -j- b) = 8 and (a b)
=

3^.

Take e = 6, a number intermediate to 8 and 3. Then
the following are the possible integer values of ex and e

a
which

will produce e = 6 :

e e, e, limits of e
a

- 6 = -
5
-

1, -ls=+(e+^
= - 4 - 2,

= -3-3, - 3 = - *-

Similarly, the limits of e
a

for values of e lying between

(# b) and + (0 b) are and + &\ and the limits of

e
a
for values of e between -f (# )

and -\-{a-\-b) are + (e a)
and -j- & Hence

v '

4# /
a 4^

"^ for (a+b) < e< - (a- J),

b

4<zb /
2

4ab (3)

^=43/^=^^
for +(-*><+<+*>.

Thus it appears that in this case the graph of the resultant

law of error is represented by the upper base and the two sides

of a trapezoid, the lower base being the
lion .

axis of e and the line joining the middle
1110111 . c , , ..,., V

points of the bases being the axis of 0(e).

(See the first figure in Art. 13.) The prop-

erties of (3), including the determination

of the limits, are also illustrated by the
nil

. . f
.

J

adjacent trapezoid of numerals arranged
11111

1 , *
to represent the case wherein a = 0.5 and

b = 0.3. The vertical scale, or that for 0(e), does not, how-

ever, conform exactly to that for e.

IIIIOII

union
IIIIIIOII

minion
IIIIIIIIOII
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Prob. 20. Prove that the values of 0(e) as given by equation (3)

satisfy the condition specified in equation (3), Art. 10.

Prob. 21. Examine equations (3) for the cases wherein a = and

b = o; and interpret for the latter case the first and last of (3).

Prob. 22. Find from (3), and (r) of Art. 11, the probable error of

the sum of two tabular logarithms.

Art. 13. Errors of Interpolated Values.

Case I. One of the most instructive cases to which formulas

(3) of Art. 12 are applicable is that of interpolated logarithms,

trigonometric functions, etc., dependent on first differences.

Thus, suppose that v
1
and z>

2
are two tabular logarithms, and

that it is required to get a value v lying t tenths of the interval

from v
x
towards v

2. Evidently

v = v + (, *0 1= (1
-

t)vx + tv
9 ;

and hence if e, e
l9 e^ denote the actual errors of v, v

lf v^ ,
re-

spectively,
r = (1 -/)'. + "- (0

It is to be carefully noted here that e as given by (1) re-

quires the retention in v of at least one decimal place be-

yond the last tabular place. For example, let v = log (24373)

from a 5-place table. Then ^ = 4.38686, v%
= 4.38763,

i7
a

v
x
= +0.00017, t = 0.3, and v =4.38691.1. Likewise, as

found from a 7-place table, e
x
= 0.45, e.t

= +0.37 in units of

the fifth place; and hence by (1) e= 0.20. That is, the

actual error of v = 4.3869 1.1 is = 0.20, and this is verified by
reference to a 7-place table.

The reader is also cautioned against mistaking the species

of interpolated values here considered for the species common-

ly used by computers, namely, that in which the interpolated

value is rounded to the nearest unit of the last tabular place.

The latter species is discussed under Case II below.

Confining attention now to the class of errors specified by

equation (1), there result in the notation of the preceding

article

,
=

(1 t)ev e^ te^ and e = e = e
x + e2 1

and since e
i
and e^ each vary continuously between the limits



498 PROBABILITY AND THEORY OF ERRORS. [Chap. X.

0.5 of a unit of the last tabular place, a and b in equations

(3) of that article have the values

a = 0.5(1 /), b =0.5/.

Hence the law of error of the interpolated values is ex-

pressed as follows :

O.S + e

0(e) =
{i-t)t

for values of e betw. 0.5 and (0.5/),

I - t

0.5
-

for values of e betw. (0.5/) and +(0.5/), \ (2)

for values of e betw. +(0.5/) and +0.5.
(I
-

t)t

The graph of 0(e) for / = 1/3 is shown by the trapezoid

AB, BCf CD in the figure on page $00. Evidently the equa-
tions (2) are in general represented by a trapezoid, which degen-

erates to an isosceles triangle when / = 1/2.

The probable, mean, and average errors of an interpolated

value of the kind in question are readily found from (2), and

from equations (1) of Art. 11, to be

e, =(i/4)(i-/)

= 1/2 (1/2)^2/(1
-

= 1/4/

__
f i-ft-aQ' )*

"

\ 96(1 -/)/)'96(1

(1

/)/

2ty

24(1 /)/

l-(2t- I)
3

for o < / < 1/3,

for 1/3 </ < 2/3,

for 2/3 <t < 1.

for o < t < 1/2,

for 1/2 < t < 1.

y (3)

24(1 ty

It is thus seen that the probable error of the interpolated

value here considered decreases from 0.25 to 0.15 of a unit of

the last tabular place as / increases from o to 0.5. Hence such

values are more precise than tabular values
;
and the computer

who desires to secure the highest attainable precision with a

given table of logarithms should retain one additional figure

beyond the last tabular place in interpolated values.
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Case II. Recurring to the equation v v
x -\- t(v.x v

x) for an

interpolated value v in terms of two consecutive tabular values

v
x
and v

a ,
it will be observed that if the quantity t{v%

v
x ) is

rounded to the nearest unit of the last tabular place, a new error

is introduced. For example, if v
x
= log 1633 = 3.21299, and

v
*
= lg J ^34 = 3-2 1 325 from a 5-place table, v^ v

x
=

-\- 26

units of the last tabular place ;
and if / = 1/3, t(v%

v
x)
= 8f ;

so that by the method of interpolation in question there results

v = 3.21299 +9 = 3.21308. Now the actual errors of z\ and

v
% are, as found from a 7-place table, 0.38 and -)-o.2i in units

of the fifth place. Hence the actual error of v is by equation

(0> f X -3 8 + i X + - 21 i = -5 2 >
as is shown di-

rectly by a 7-place table.

It appears, then, that in this case the error-equation cor-

responding to (1) is

* = (1- />,+ /*, +e% , (4)

therein e
x
and e^ are the same as in (1) and e

3
is the actual error

that comes from rounding t{y^ v
x)

to the nearest unit of the

last tabular place.

The error e
% , however, differs radically in kind from e

x
and

t
. The two latter are continuous, that is, they may each have

-any value, between the limits 0.5 and +0.5 ;
while e

3
is dis-

continuous, being limited to a finite number of values depend-

ent on the interpolating factor /. Thus, for t = 1/2 the only

possible values of e
3
are o + 1/2, and 1/2 ;

likewise for t =
1/3, the only possible values of e

s
are o, + 1/3, and 1/3. It

is also clear that the maximum value of e, which is constant and

equal to 1/2 for (1), is variable for (4) in a manner dependent

on /. For example, in (4),

The maximum of e = 1/2 + 1/2 = 1, for / = 1/2,

e = 1/2 + 1/3 = 5/6,
"

/ = 1/3,

"*= 1/2 + 1/2 = 1,
"

* = i/4,
" e = 1/2 + 2/5 = 9/10

"
/ = 1/5.

The determination of the law of error for this case presents

some novelty, since it is essential to combine the continuous

errors (1 t)e x
and te^ with the discontinuous error e

3
. The



500 PROBABILITY AND THEORY OF ERRORS. [Chap. X.

simplest mode of attacking the problem seems to be the fol-

lowing quasi-geometrical one. In the notation of Arts. 12 and

13, put in (4) e = e, (1 t)e^ = e te^
= e2 ,

and e
%
= e

3
. Then

e =>* + e
3) + e

3
. (5)

The law of error for (e. -f- e
2)

is given by equation (2) for any
value of /. Hence for a given value of t there will be as many

expressions of 0(e) as there are different values of e
3

. The

graphs of 0(e) will all be of the same form but will be differently

placed with reference to the axis of 0(e). Thus, if t = 1/3 the

values of e
3
are 1/3, o, and

-f- 1/3, and these are equally

likely to occur. For e
3
= o the

graph is given directly by (2),

and is the trapezoid ABCD
symmetrical with respect to OQ.
For e

3
= 1/3 the graph is

abQd, of the same form as

ABCD but shifted to the left

by the amount of e
3
= 1/3.

<i d t.

Similarly, the graph for the case

of e
3
= + 1/3 is a

'

Qb'd', and is produced by shifting ABCD to

the right by an amount equal to + J /3*

Now, since the three systems of errors for this case are

equally likely to occur, they may be combined into one system

by simple addition of the corresponding element areas of the

several graphs. Inspection of the diagram shows* that the

resultant law of error is expressed by

0(e) = (1/4X5 + 6e) for - 5/6 < e < -
1/6, ^

= 1 for - 1/6 < e < + 1/6, }- (6>

= (l/4)(5 - 6e) for + 1/6 < e < -L
5/6. J

This is represented by a trapezoid whose lower base is 10/6,

upper base 2/6, and altitude 1.

* Sum the three areas and divide by 3 to make resultant area = i, as

required by equation (3), Art. 10.
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As a second illustration, consider equation (5) for the case

/ = 1/2. In this case e
3 must be either o or 1/2, the sign of

which latter is arbitrary. For e
3
= o, equations (2) give

0(e) = 2 -f- 4e for 1/2 < e < O

46- for o < e <-|- 1/2.
(7)

This function is represented by the isosceles triangle AQE
whose altitude OQ is twice the base AE.

Similarly 0(e) for e
3
=

-\- 1/2 would

be represented by the triangle AQE dis-

placed to the right a distance 1/2 ;
and

if the two systems for e
3
= o and e

3
=

-j- 1/2 be combined into one system,

their resultant law of error is evidently

<p(e)= i-\-2e for i/2<e<o, \

= 1 foro< e<+ i/2, (.

(8)

= 2 2e for -f- 1/2 < e< 1
;

)

the graph of which is ABCD. On the

other hand, if the errors in this combined system be considered

with respect to magnitude only, the law of error is

0(e) = 2(1
-

e) for O < e< I, (9)

the graph of which is OQD.
The student should observe that (6), (7), (8), and (9) satisfy

the condition / cp(e)de = I if the integration embraces the

whole range of e.

The determination of the general form of 0(e) in terms of

the interpolating factor / for the present case presents some

difficulties, and there does not appear to be any published solu-

tion of this problem.* The results arising from one phase of

the problem have been given, however, by the author in the

Annals of Mathematics,! and may be here stated without:

proof. The phase in question is that wherein / is of the form

l/n, n being any positive integer less than twice the greatest

* The author explained a general method of solution in a paper read at the

summer meeting of the American Mathematical Society, August, 1895.

f Vol. II, pp. 54-59.
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tabular difference of the table to which the formulas are ap-

plied. For this restricted form of / the possible maximum
value of e as given by equation (5) is, in units of the last

tabular place, {2n i)/n for n odd and 1 for n even.

The possible values of e
3
of equation (5) are

o,

I
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Typical Errors of Interpolated Logarithms, etc.

Interpolating
Factor.
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Prob. 24. Show that the probable, mean, and average errors

for the case of / = 2/5 cited above (p. 503) are 0.261, 0.251,

and 0.290, respectively.

Art. 14. Statistical Test of Theory.

A statistical test of the theory developed in Art. 13 may
be readily drawn from any considerable number of actual er-

rors of interpolated values dependent on the same interpolating

factor. The application of such a test, if carried out fully by
the student, will go far also towards fixing clear notions as to

the meaning of the critical errors.

Consider first the case in which an interpolated value falls

midway between two consecutive values, and suppose this

interpolated value retains two additional figures beyond the

last tabular place. Then by equations (2), Art. 13, the law oi

error of this interpolated value is

0(e) = 2 + 46 for e between 0.5 and o

= 2 4e for e between o and + 0.5.

Hence by equation (1) of Art. 1 1, or equation (3) of Art. 12, the

probable error in this system of errors is J- (J) V2 = 0.15.

It follows, therefore, that in any large number of actual errors

of this system, half should be less and half greater than 0.15.

Similarly, of the whole number of such errors the percentage

falling between the values 0.0 and 0.2 should be

+ 0-3 +0-2

J cp(e)de = 2J (2 4e)de = 0.64 ;

-0.2

that is, sixty-four per cent of the errors in question should be

less numerically than 0.2.

To afford a more detailed comparison in this case, the act-

ual errors of five hundred interpolated values from a 5-place

table have been computed by means of a 7-place table. The

arguments used were the following numbers : 20005, 2 35>

20065, 20105, 20135, etc., in the same order to 36635. The
actual and theoretical percentages of the whole number of

errors falling between the limits 0.0 and 0.1, 0.1 and 0.2, etc.,

are shown in the tabular form following :
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Limits of Errors. D
Actual Theoretical

Percentage. Percentage.

o.oando.i 33.2 36
0.1 and 0.2 30.2 28

0.2 and 0.3 19.0 20

0.3 and 0.4 13.2 12

0.4 and 0.5 4.4 4
0.0 and 0.1 5 51.4 50

The agreement shown here between the actual and theoretical

percentages is quite close, the maximum discrepancy being 2.8

and the average 1.5 per cent.

Secondly, consider the case of interpolated mid-values of the

species treated under Case II of Art. 13. The law of error for

this case is given by the single equation (9) of Art. 13, namely,

<p(e)
= 2(1 e), no regard being paid to the signs of the errors.

The probable error is then found from

2f(i-e)de = h

whence ep = 1 i V2 = 0.29. Similarly, the percentage of

the whole number of errors which may be expected to lie, for

example, between 0.0 and 0.2 in this system is

9

2 / (1 e)de = 0.36.

Using the same five hundred interpolated values cited

above, but rounding them to the nearest unit of the last tabu-

lar place and computing their actual errors by means of a 7-place

table, the following comparison is afforded :

t , 4 i?*MM Actual Theoretical
Limits of Errors.

Percentage. Percentage.

0.0 and 0.2 35.8 36

0.2 and 0.4 , 27.8 28

0.4 and 0.6 18.6 20

0.6 and 0.8 12.2 12

0.8 and 1.0 5.6 4

0.0 and 0.29 49.8 50
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The agreement shown here between the actual and theoretical

percentages is somewhat closer than in the preceding case, the

maximum discrepancy being only 1.6 and the average only 0.6

per cent.

Finally, the following data derived from one thousand act-

ual errors may be cited. The errors of one hundred inter-

polated values rounded to the nearest unit of the last tabular

place were computed
* for each of the interpolating factors

0.1, 0.2, . . . 0.9. The averages of these several groups of act-

ual errors are given along with the corresponding theoretical

errors in the parallel columns below:

Interpolating Actual Theoretical
Factor. Average Error. Average Error.

0.1 0.338 0.320

0.2 0.288 O.303

O.3 O.32I O.304

O.4 O.268 O.29O

0.5 O.324 O.333

O.6 ... O.276 O.29O

07 O.32I O.304

O.8 O.289 O.303

O.9 O.347 O.32O

The average discrepancy between the actual and theoret-

ical values shown here is 0.017. It is, perhaps, somewhat

smaller than should be expected, since the computation of the

actual errors to three places of decimals is hardly warranted

by the assumption of dependence on first differences only.

The average of the whole number of actual errors in this

case is 0.308, which agrees to the same number of decimals

with the average of the theoretical errors, f

* By Prof. H. A. Howe. See Annals of Mathematics, Vol. Ill, p. 74.

The theoretical averages were furnished to Prof. Howe by the author.

f The reader who is acquainted with the elements of the method of least

squares will find it instructive to apply that method to equation (1), Art. 13,

and derive the probable error of e. This is frequently done without reserve by
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Prob. .25. Apply formulas (3) of Art. 12 to the case of the sum

or difference of two tabular logarithms and derive the correspond-

ing values of the probable, mean, and average errors. The graph
of 0(e) is in this case an isosceles triangle whose base, or axis of e>

is 2, and whose altitude, or axis of 0(e), is 1.

those familiar with least squares. Thus, the probable error of d or <?a being

0.25, the probable error of e is found to be

0.25 Vi 2/ + 2**.

This varies between 0.25 for /= o and 0.18 for t = \ ;
while the true value of

the probable error, as shown by equations (3), Art. 13, varies from 0.25 to 0.15

for the same values of /. It is, indeed, remarkable that the method of least

squares, which admits infinite values for the actual errors ex and ei} should give

so close an approximate formula as the above for the probable error of e.

Similarly, one accustomed to the method of least squares would be inclined

to apply it to equation (4), Art. 13, to determine the probable error of e. The

natural blunder in this case is .to consider eu <?2 ,
and e% independent, and e% like

ei and e-x continuous betweer the limits 0.0 and 0.5 ;
and to assign a probable

error of 0.25 to each. In t'.is manner the value

0.25^2(1 -/ + /
8
)

is derived. But this is absurd, since it gives 0.25 V2 instead of 0.25 for t = o.

The formula fails then to give even approximate results except for values of t

near 0.5.
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Chapter XL

HISTORY OF MODERN MATHEMATICS.

By David Eugene Smith,

Professor of Mathematics in the Michigan State Normal College.

Art. 1. Introduction.

Modern Mathematics is a term by no means well defined.

Algebra cannot be called modern, and yet the theory of equa-

tions has received some of its most important additions during
the nineteenth century, while the theory of forms is a recent

creation. Similarly with elementary geometry; the labors of

Lobachevsky and Bolyai during the second quarter of the

century threw a new light upon the whole subject, and more

recently the study of the triangle has added another chapter
to the theory. Thus the history of modern mathematics must

also be the modern history of ancient branches, while subjects

which seem the product of late generations have root in other

centuries than the present.

How unsatisfactory must be so brief a sketch may be in-

ferred from a glance at the Index du Repertoire Bibliographique
des Sciences Mathmatiques (Paris, 1893), whose seventy-one

pages contain the mere enumeration of subjects in large part

modern, or from a consideration of the twenty-six volumes of the

Jahrbuch. tiber die Fortschritte der Mathematik, which now
devotes over a thousand pages a year to a record of the pro-

gress of the science.*

The seventeenth and eighteenth centuries laid the founda-

* The foot-notes give only a few of the authorities which might easily be

cited. They are thought to include those from which considerable extracts

have been made, the necessary condensation of these extracts making any other

form of acknowledgment impossible.
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tions of much of the subject as known to-day. The discovery

of the analytic geometry by Descartes, the contributions to the

theory of numbers by Fermat, to algebra by Harriot, to

geometry and to mathematical physics by Pascal, and the

discovery of the differential calculus by Newton and Leibniz,

all contributed to make the seventeenth century memorable.

The eighteenth century was naturally one of great activity.

Euler and the Bernoulli family in Switzerland, d'Alembert,

Lagrange, and Laplace in Paris, and Lambert in Germany,

popularized Newton's great discovery, and extended both its

theory and its applications. Accompanying this activity, how-

ever, was a too implicit faith in the calculus and in the in-

herited principles of mathematics, which left the foundations

insecure and necessitated their strengthening by the succeed-

ing generation.

The nineteenth century has been a period of intense study
of first principles, of the recognition of necessary limitations

of various branches, of a great spread of mathematical knowl-

edge, and of the opening of extensive fields for applied mathe-

matics. Especially influential has been the establishment of

scientific schools and journals and university chairs. The

great renaissance of geometry is not a little due to the founda-

tion of the Ecole Polytechnique in Paris (1794-5), and the simi-

lar schools in Prague (1806), Vienna (181 5), Berlin (1820),

Karlsruhe (1825), and numerous other cities. About, the mid-

dle of the century these schools began to exert a still a greater

influence through the custom of calling to them mathemati-

cians of high repute, thus making Zurich, Karlsruhe, Munich,

Dresden, and other cities well known as mathematical centers.

In 1796 appeared the first number of the Journal de l'Ecole

Polytechnique. Crelle's Journal fiir die reine und angewandte
Mathematik appeared in 1826, and ten years later Liouville

began the publication of the Journal de Mathematiques pures
et appliquees, which has been continued by Resal and Jordan.

The Cambridge Mathematical Journal was established in 1839,

and merged into the Cambridge and Dublin Mathematical
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Journal in 1846. Of the other periodicals which have contrib-

uted to the spread of mathematical knowledge, only a few

can be mentioned : the Nouvelles Annales de Mathematiques

(1842), Grunert's Archiv der Mathematik (1843), Tortolini's

Annali di Scienze Matematiche e Fisiche (1.850), Schlomilch's

Zeitschrift fur Mathematik und Physik (1856), the Quarterly

Journal of Mathematics (1857), Battaglini's Giornale di Mate-

matiche (1863), the Mathematische Annalen (1869), the Bulle-

tin des Sciences Mathematiques (1870), the American Jour-

nal of Mathematics (1878), the Acta Mathematica (1882), and

the Annals of Mathematics (1884)
* To this list should be

added a recent venture, unique in its aims, namely, L'lnter-

mediaire des Mathematiciens (1894), and two annual publica-

tions of great value, the Jahrbuch already mentioned (1868),

and the Jahresbericht der deutschen Mathematiker-Vereini-

gung (1892).

To the influence of the schools and the journals must be

added that of the various learned societies f whose published

proceedings are widely known, together with the increasing

liberality of such societies in the preparation of complete
works of a monumental character.

The study of first principles, already mentioned, was a nat-

ural consequence of the reckless application of the new cal-

culus and the Cartesian geometry during the eighteenth

century. This development is seen in theorems relating to in-

finite series, in the fundamental principles of number, rational,

* For a list of current mathematical journals see the Jahrbuch iiber die Fort-

schritte der Mathematik. A small but convenient list of standard periodicals is

given in Carr's Synopsis of Pure Mathematics, p. 843 ; Mackay, J. S., Notice

sur le journalisme mathematique en Angleterre, Association francaise pour

l'Avancement des Sciences, 1893, II, 303 ; Cajori, F., Teaching and History of

Mathematics in the United States, pp. 94, 277; Hart, D. S., History of Ameri-

can Mathematical Periodicals, The Analyst, Vol. II, p. 131.

f For a list of such societies consult any recent number of the Philosophical

Transactions of Royal Society of London. Dyck, W., Einleitung zu dem fur

den mathematischen Teil der deutschen Universitatsausstellung ausgegebenen

Specialkatalog, Mathematical Papers Chicago Congress (New York, 1896), p. 44.
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irrational, and complex, and in the concepts of limit, conti-

unity, function, the infinite, and the infinitesimal. But the

nineteenth century has done more than this. It has created

new and extensive branches of an importance which promises

much for pure and applied mathematics. Foremost among
these branches stands the theory of functions founded by

Cauchy, Riemann, and Weierstrass, followed by the descrip-

tive and projective geometries, and the theories of groups, of

forms, and of determinants.

The nineteenth century has naturally been one of specializ-

ation. At its opening one might have hoped to fairly compass
the mathematical, physical, and astronomical sciences, as did

Lagrange, Laplace, and Gauss. But the advent of the new

generation, with Monge and Carnot, Poncelet and Steiner,

Galois, Abel, and Jacobi, tended to split mathematics into

branches between which the relations were long to remain ob-

scure. In this respect recent years have seen a reaction, the

unifying tendency again becoming prominent through the

theories of functions and groups.* . .

Art. 2. Theory of Numbers.

The Theory of Numbers, f a favorite study among the

Greeks, had its renaissance in the sixteenth and seventeenth

centuries in the labors of Viete, Bachet de Meziriac, and es-

pecially Fermat. In the eighteenth century Euler and

Lagrange contributed to the theory, and at its close the sub-

ject began to take scientific form through the great labors of

Legendre (1798), and Gauss (1801). With the latter's Disquisi-

tiones Arithmeticae (1801) may be said to begin the modern

theory of numbers. This theory separates into two branches,

the one dealing with integers, and concerning itself especially

* Klein, F., The Present State of Mathematics, Mathematical Papers of

Chicago Congress (New York, 1896), p. 133.

f Cantor, M., Geschichte der Mathematik, Vol. Ill, p. 94; Smith, H. J. S.,

Report on the theory of numbers; Collected Papers, Vol. I; Stolz, O., Gros-

sen und Zahlen, Leipzig, 1891.
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with (i) the study of primes, of congruences, and of residues,

and in particular with the law of reciprocity, and (2) the theory
of forms, and the other dealing with complex numbers.

The Theory of Primes* has attracted many investigators

during the nineteenth century, but the results have been de-

tailed rather than general. Tchebichef (1850) was the first to

reach any valuable conclusions in the way of ascertaining the

number of primes between two given limits. Riemann (1859)

also gave a well-known formula for the limit of the number of

primes not exceeding a given number.

The Theory of Congruences may be said to start with

Gauss's Disquisitiones. He introduced the symbolism a = b

(mod c),
and explored most of the field. Tchebichef published

in 1847 a work in Russian upon the subject, and in France

Serret has done much to make the theory known.

Besides summarizing the labors of his predecessors in the

theory of numbers, and adding many original and noteworthy

contributions, to Legendre may be assigned the fundamental

theorem which bears his name, the Law of Reciprocity of Quad-
ratic Residues. This law, discovered by induction by Euler,

was enunciated by Legendre and first proved in his Theorie

des Nombres (1798) for special cases. Independently of Euler

and Legendre, Gauss discovered the law about 1795, and was

the first to give a general proof. To the subject have also

contributed Cauchy, perhaps the most versatile of French

mathematicians of the century; Dirichlet, whose Vorlesungen
liber Zahlentheorie, edited by Dedekind, is a classic ; Jacobi,

who introduced the generalized symbol which bears his name ;

Liouville, Zeller, Eisenstein, Kummer, and Kronecker. The

theory has been extended to include cubic and biquadratic

reciprocity, notably by Gauss, by Jacobi, who first proved the

law of cubic reciprocity, and by Kummer.

* Brocard, H., Sur la frequence et la totality des nombres premiers; Nou-

velle Correspondence de Mathematiques, Vols. Vand VI; gives recent history to

1&79.
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To Gauss is also due the representation of numbers by

binary quadratic forms. Cauchy, Poinsot (1845), Lebesques

(1859, 1868), and notably Hermite have added to the subject.

In the theory of ternary forms Eisenstein has been a leader,

and to him and H. J. S. Smith is also due a noteworthy ad-

vance in the theory of forms in general. Smith gave a com-

plete classification of ternary quadratic forms, and extended

Gauss's researches concerning real quadratic forms to complex
forms. The investigations concerning the representation of

numbers by the sum of 4, 5, 6, 7, 8 squares were advanced by
Eisenstein and the theory was completed by Smith.

In Germany, Dirichlet was one of the most zealous workers

in the theory of numbers, and was the first to lecture upon the

subject in a German university. Among his contributions is

the extension of Fermat's theorem on xn
-\-y

n = zn
,
which Euler

and Legendre had proved for n = 3, 4, Dirichlet showing that

x b

-\~y^ az\ Among the later French writers are Borel ;

Poincare, whose memoirs are numerous and valuable
; Tannery,

and Stieltjes. Among the leading contributors in Germany
are Kronecker, Kummer, Schering, Bachmann, and Dedekind.

In Austria Stolz's Vorlesungen iiber allgemeine Arithmetik

(1885-86), and in England Mathews' Theory of Numbers

(Part I, 1892) are among the most scholarly of general works.

Genocchi, Sylvester, and J. W. L. Glaisher have also added to

the theory.

Art. 3. Irrational and Transcendent Numbers.

The sixteenth century saw the final acceptance of negative

numbers, integral and fractional. The seventeenth century

saw decimal fractions with the modern notation quite generally

used by mathematicians. The next hundred years saw the

imaginary become a powerful tool in the hands of De Moivre,

and especially of Euler. For the nineteenth century it re-

mained to complete the theory of complex numbers, to separate

irrationals into algebraic and transcendent, to prove the exist-

ence of transcendent numbers, and to make a scientific study
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of a subject which had remained almost dormant since Euclid,

the theory of irrationals. The year 1872 saw the publication

of the theories of Weierstrass (by his pupil Kossak), Heine

(Crelle, 74), G. Cantor (Annalen, 5), and Dedekind. Meray had

taken in 1869 the same point of departure as Heine, but the

theory is generally referred to the year 1872. Weierstrass's

method has been completely set forth by Pincherle (1880), and

Dedekind's has received additional prominence through the

author's later work (1888) and the recent indorsement by Tan-

nery (1894). Weierstrass, Cantor, and Heine base their the-

ories on infinite series, while Dedekind founds his on the idea

of a cut (Schnitt) in the system of real numbers, separating all

rational numbers into two groups having certain characteristic

properties. The subject has received later contributions at the

hands of Weierstrass, Kronecker (Crelle, 101), and Meray.

Continued Fractions, closely related to irrational numbers

(and due to Cataldi, 1613),* received attention at the hands of

Euler, and at the opening of the nineteenth century were

brought into prominence through the writings of Lagrange.

Other noteworthy contributions have been made by Drucken-

muller (1837), Kunze (1857), Lemke (1870), and Gunther (1872).

Ramus (1855) first connected the subject with determinants,

resulting, with the subsequent contributions of Heine, Mobius,

and Gunther, in the theory of Kettenbruchdeterminanten.

Dirichlet also added to the general theory, as have numerous

contributors to the applications of the subject.

Transcendent Numbers f were first distinguished from alge-

braic irrationals by Kronecker. Lambert proved (1761) that

it cannot be rational, and that e
n
(n being a rational number) is

irrational, a proof, however, which left much to be desired.

* But see Favaro, A., Notizie storiche sulle frazioni continue dal secolo deci-

moterzo al decimosettimo, Boncompagni's Bulletino, Vol. VII, 1874, pp. 451,

533-

f Klein, F., Vortrage iiber ausgewahlte Fragen der Elementargeometrie,

1895, p. 38; Bachmann, P., Vorlesungen iiber die Natur der Irrationalzahlen,

1892.
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Legendre (1794) completed Lambert's proof, and showed that

it is not the square root of a rational number. Liouville (1840)

showed that neither e nor e* can be a root of an integral quadratic

equation. But the existence of transcendent numbers was first

-established by Liouville (1844, 1851), the proof being subse-

quently displaced by G. Cantor's (1873). Hermite (1873) first

proved e transcendent, and Lindemann (1882), starting from

Hermite's conclusions, showed the same for n. Lindemann's

proof was much simplified by Weierstrass (1885), still further

by Hilbert (1893), and has finally been made elementary by
Hurwitz and Gordan.

Art. 4. Complex Numbers.

The Theory of Complex Numbers* may be said to have

attracted attention as early as the sixteenth century in the

recognition, by the Italian algebraists, of imaginary or impos-

sible roots. In the seventeenth century Descartes distin-

guished between real and imaginary roots, and the eighteenth

saw the labors of De Moivre and Euler. To De Moivre is

due (1730) the well-known formula which bears h is name,

(cos <p-\-t sin 0)
M = cos ncfy + i sin #0, and to Euler (1748) the

formula cos + z sin = ***.

The geometric notion of complex quantity now arose, and

as a result the theory of complex numbers received a notable

expansion. The idea of the graphic representation of complex
numbers had appeared, however, as early as 1685, in Wallis's

De Algebra tractatus. In the eighteenth century Kuhn (1750)

and Wessel (about 1795) made decided advances towards the

present theory. Wessel's memoir appeared in the Proceed-

ings of the Copenhagen Academy for 1799, and is exceedingly

*Riecke, F., Die Rechnung mit Richtungszahlen, 1856, p. 161 ; Hankel, H.,

Theorie der komplexen Zahlensysteme, Leipzig, 1867 ; Holzmiiller, G., Theorie

derisogonalen Verwandtschaften, 1882, p. 21; Macfarlane, A., The Imaginary

of Algebra, Proceedings of American Association 1892, p. 33 ; Baltzer, R.,

Einflihrung der komplexen Zahlen, Crelle, 1882
; Stolz, O., Vorlesungen iiber

allgemeine Arithmetik, 2. Theil, Leipzig, 1886.
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clear and complete, even in comparison with modern works.

He also considers the sphere, and gives a quaternion theory

from which he develops a complete spherical trigonometry.

In 1804 the Abbe Buee independently came upon the same

idea WTiich Wallis had suggested, that |/_ j should repre-

sent a unit line, and its negative, perpendicular to the real axis.

Buee's paper was not published until 1806, in which year Ar-

gand also issued a pamphlet on the same subject. It is to

Argand's essay that the scientific foundation for the graphic

representation of complex numbers is now generally referred.

Nevertheless, in 183 1 Gauss found the theory quite unknown,

and in 1832 published his chief memoir on the subject, thus

bringing it prominently before the mathematical world. Men-

tion should also be made of an excellent little treatise by

Mourey (1828), in which the foundations for the theory of di-

rectional numbers are scientifically laid. The general accept-

ance of the theory is not a little due to the labors of Cauchy
and Abel, and especially the latter, who was the first to boldly

use complex numbers with a success that is well known.

The common terms used in the theory are chiefly due to

the founders. Argand called cos -f- i sin the "direction

factor", and r Vc? + b* the " modulus "
; Cauchy ( 1 828) called

cos + /sin the " reduced form"(l'expression reduite); Gauss

used i for V 1, introduced the term "
complex number "

for

a -f- bi, and called c? + b* the " norm/' The expression
" direction coefficient ", often used for cos -f- z sin 0, is due

to Hankel (1867), and "absolute value," for "modulus," is

due to Weierstrass.

Following Cauchy and Gauss have come a number of con-

tributors of high rank, of whom the following maybe especially

mentioned: Kummer (1844), Kronecker(i845), Scheffler (1845,

185 1, 1880), Bellavitis (1835, 1852), Peacock (1845), and De

Morgan (1849). Mobius must also be mentioned for his num-

erous memoirs on the geometric applications of complex

numbers, and Dirichlet for the expansion of the theory to in-
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elude primes, congruences, reciprocity, etc., as in the case of

real numbers.

Other types* have been studied, besides the familiar a -\-bi,

in which i is the root of x* -f- I = o. Thus Eisenstein has

studied the type a + bj\J being a complex root of x%
I = o.

Similarly, complex types have been derived from xk 1=0
{k prime). This generalization is largely due to Kummer, to

whom is also due the theory of Ideal Numbers,f which has

recently been simplified by Klein (1893) from the point of view

of geometry. A further complex theory is due to Galois, the

basis being the imaginary roots of an irreducible congruence,

^(^=0 (mod/, a prime). The late writers (from 1884) on

the general theory include Weierstrass, Schwarz, Dedekind,

Holder, Berloty, Poincare, Study, and Macfarlane.

Art. 5. Quaternions and Ausdehnungslehre.

Quaternions and Ausdehnungslehre^: are so closely related

to complex quantity, and the latter to complex number, that

the brief sketch of their development is introduced at this

point. Caspar Wessel's contributions to the theory of com-

plex quantity and quaternions remained unnoticed in the

proceedings of the Copenhagen Academy. Argand's attempts
to extend his method of complex numbers beyond the space

of two dimensions failed. Servois (1813), however, almost

trespassed on the quaternion field. Nevertheless there were

fewer traces of the theory anterior to the labors of Hamilton

than is usual in the case of great discoveries. Hamilton dis-

covered the principle of quaternions in 1843, and the next year

his first contribution to the theory appeared, thus extending
the Argand idea to three-dimensional space. This step neces-

*
Chapman, C. H., Weierstrass and Dedekind on General Complex Num-

bers, in Bulletin New York Mathematical Society, Vol. I, p. 150; Study, E.,

Aeltere und neuere Untersuchungen liber Systeme complexer Zahlen, Mathe-

matical Papers Chicago Congress, p. 367; bibliography, p. 381.

f Klein, F., Evanston Lectures, Lect. VIII.

% Tait, P. G., on Quaternions, Encyclopaedia Britannica; Schlegel, V., Die

Grassmann'sche Ausdehnungslehre, Schldmilch's Zeitschrift, Vol. XLI.
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sitated an expansion of the idea of r(cos <p +/sin cp) suck

that while r should be a real number and a real angle, i, j>

or k should be any directed unit line such that i
2

=j
2

k* = I.

It also necessitated a withdrawal of the commutative law of

multiplication, the adherence to which obstructed earlier dis-

covery. It was not until 1853 that Hamilton's Lectures on

Quarternions appeared, followed (1866) by his Elements of

Quaternions.

In the same year in which Hamilton published his discov-

ery (1844), Grassmann gave to the world his famous work,.

Die lineale Ausdehnungslehre, although he seems to have

been in possession of the theory as early as 1840. Differing

from Hamilton's Quaternions in many features, there are

several essential principles held in common which each writer

discovered independently of the other.*

Following Hamilton, there have appeared in Great Britain

numerous papers and works by Tait (1867), Kelland and Tait

(1873), Sylvester, and McAulay (1893). On the Continent

Hankel (1867), Hoiiel (1874), and Laisant (1877, 1881) have

written on the theory, but it has attracted relatively little

attention. In America, Benjamin Peirce (1870) has been

especially prominent in developing the quaternion theory, and

Hardy (1881) Macfarlane, and Hathaway (1896) have con-

tributed to the subject. The difficulties have been largely in

the notation. In attempting to improve this symbolism Macfar-

lane has aimed at showing how a space analysis can be de-

veloped embracing algebra, trigonometry, complex numbers,

Grassmann's method, and quaternions, and has considered the

general principles of vector and versor analysis, the versor

being circular, elliptic logarithmic, or hyperbolic. Other recent

contributors to the algebra of vectors are Gibbs (from 1 881)

and Heaviside (from 1885).

The followers of Grassmann f have not been much more

* These are set forth in a paper by J. W. Gibbs, Nature, Vol. XLIV, p. 79.

f For bibliography see Schlegel, V., Die Grassmann'sche Ausdehnungs-

lehre, Schlomilch's Zeitschrift, Vol. XLI.
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numerous than those of Hamilton. Schlegel has been one of

the chief contributors in Germany, and Peano in Italy. In

America, Hyde (Directional Calculus, 1890) has made a plea

for the Grassmann theory.*

Along lines analogous to those of Hamilton and Grassmann'

have been the contributions of Scheffler. While the two
former sacrificed the commutative law, Scheffler (1846, 1851,.

1880) sacrificed the distributive. This sacrifice of fundamental

laws has led to an investigation of the field in which these

laws are valid, an investigation to which Grassmann (1872),

Cayley, Ellis, Boole, Schroder (1890-91), and Kraft (1893)

have contributed. Another great contribution of Cayley \s

along similar lines is the theory of matrices (1858).

Art. 6. Theory of Equations.

The Theory of Numerical Equations f concerns itself first

with the location of the roots, and then with their approxi-

mation. Neither problem is new, but the first noteworthy
contribution to the former in the nineteenth century was

Budan's (1807). Fourier's work was undertaken at about the

same time, but appeared posthumously in 1831. All processes

were, however, exceedingly cumbersome until Sturm (1829)

communicated to the French Academy the famous theorem

which bears his name and which constitutes one of the most

brilliant discoveries of algebraic analysis.

The Approximation of the Roots, once they are located,

can be made by several processes. Newton (171 1), for example,

gave a method which Fourier perfected; and Lagrange (1767)

discovered an ingenious way of expressing the root as a con-

tinued fraction, a process which Vincent (1836) elaborated. It

* For Macfarlane's Digest of views of English and American writers, see

Proceedings American Association for Advancement of Science, 1891.

f Cayley, A., Equations, and Kelland. P., Algebra, in Encyclopaedia Bri-

tannica; Favaro, A., Notizie storico-critiche sulla costruzione delle equazioni.

Modena, 1878; Cantor, M., Geschichte der Mathematik, Vol. Ill, p. 375.



520 HISTORY OF MODERN MATHEMATICS. [CHAP. XI.

was, however, reserved for Horner (
1 8 1 9) to suggest the most

practical method yet known, the one now commonly used.

With Horner and Sturm this branch practically closes. The

calculation of the imaginary roots by approximation is still an

open field.

The Fundamental Theorem* that every numerical equation

has a root was generally assumed until the latter part of the

eighteenth century. D'Alembert (1746) gave a demonstration,

as did Lagrange (1772), Laplace (1795), Gauss (1799) and Argand

(1806). The general theorem that every algebraic equation of

the th degree has exactly 11 roots and no more follows as a

special case of Cauchy's proposition (183 1) as to the number of

roots within a given contour. Proofs are also due to Gauss,

Serret, Clifford (1876), Malet (1878), and many others.

The Impossibility of Expressing the Roots of an equation

as algebraic functions of the coefficients when the degree ex-

ceeds 4 was anticipated by Gauss and announced by Ruffini,

and the belief in the fact became strengthened by the failure

of Lagrange's methods for these cases. But the first strict

proof is due to Abel, whose early death cut short his labors in

this and other fields.

The Quintic Equation has naturally been an object of

special study. Lagrange showed that its solution depends on

that of a sextic,
"
Lagrange's resolvent sextic," and Malfatti

and Vandermonde investigated the construction of resolvents.

The resolvent sextic was somewhat simplified by Cockle and

Harley (1858-59) and by Cayley (1861), but Kronecker (1858)

was the first to establish a resolvent by which a real simplifi-

cation was effected. The transformation of the general quintic

into the trinomial form x b

-\- ax -f- b = o by the extraction of

square and cube roots only, was first shown to be possible by

*
Loria, Gino, Esame di alcune ricerche concernenti l'esistenza di radici

nelle equazioni algebriche; Bibliotheca Mathematica, 1891, p. 99; bibliography

on p. 107. Pierpont, J., On the Ruffini-Abelian theorem, Bulletin of American

Mathematical Society, Vol. II, p. 200.
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Bring (1786) and independently by Jerrard
*
(1834). Hermite

(1858) actually effected this reduction, by means of Tschirn-

hausen's theorem, in connection with his solution by elliptic

functions.

The Modern Theory of Equations may be said to date from

Abel and Galois. The latter's special memoir on the subject,

not published until 1846, fifteen years after his death, placed

the theory on a definite base. To him is due the discovery

that to each equation corresponds a group of substitutions

(the
"
group of the equation ") in which are reflected its essen-

tial characteristics^ Galois's untimely death left without suffi-

cient demonstration several important propositions, a gap
which Betti (1852) has filled. Jordan, Hermite, and Kronecker

were also among the earlier ones to add to the theory. Just

prior to Galois's researches Abel (1824), proceeding from the

fact that a rational function of five letters having less than five

values cannot have more than two, showed that the roots of a

general quintic equation cannot be expressed in terms of

its coefficients by means of radicals. He then investigated

special forms of quintic equations which admit of solution by

the extraction of a finite number of roots. Hermite, Sylves-

ter, and Brioschi have applied the invariant theory of binary

forms to the same subject.

From the point of view of the group the solution by radi-

cals, formerly the goal of the algebraist, now appears as a

single link in a long chain of questions relative to the transfor-

mation of irrationals and to their classification. Klein (1884)

has handled the whole subject of the quintic equation in a

simple manner by introducing the icosahedron equation as the

normal form, and has shown that the method can be general-

ized so as to embrace the whole theory of higher equations.;);

He and Gordan (from 1879) nave attacked those equations of

*
Harley, R., A contribution of the history ... of the general equation

of the fifth degree, Quarterly Journal of Mathematics, Vol. VI, p. 38.

f See Art. 7.

% Klein, F., Vorlesungen iiber das Ikosaeder, 1884.
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the sixth and seventh degrees which have a Galois group of

168 substitutions, Gordan performing the reduction of the

equation of the seventh degree to the ternary problem. Klein

(1888) has shown that the equation of the twenty-seventh

degree occurring in the theory of cubic surfaces can be re-

duced to a normal problem in four variables, and Burkhardt

(1893) has performed the reduction, the quaternary groups in-

volved having been discussed by Maschke (from 1887).

Thus the attempt to solve the quintic equation by means

of radicals has given place to their treatment by transcendents.

Hermite (1858) has shown the possibility of the solution, by the

use of elliptic functions, of any Bring quintic, and hence of any

equation of the fifth degree. Kronecker (1858), working from

a different standpoint, has reached the same results, and his

method has since been simplified by Brioschi. More recently

Kronecker, Gordan, Kiepert, and Klein, have contributed to

the same subject, and the sextic equation has been attacked by
Maschke and Brioschi through the medium of hyperelliptic

functions.

Binomial Equations, reducible to the form xn
1 =0,

admit of ready solution by the familiar trigonometric formula

2kn . . 2kn . , /oxx = cos + zsm ;
but it was reserved for Gauss (1801)

to show that an algebraic solution is possible. Lagrange

(1808) extended the theory, and its application to geometry is

one of the leading additions of the century. Abel, generaliz-

ing Gauss's results, contributed the important theorem that if

two roots of an irreducible equation are so connected that the

one can be expressed rationally in terms of the other, the equa-

tion yields to radicals if the degree is prime and otherwise

depends on the solution of lower equations. The binomial
n-i

equation, or rather the equation 2 xm o, is one of this class

considered by Abel, and hence called (by Kronecker) Abelian

Equations. The binomial equation has been treated notably

by Richelot (1832); Jacobi (1837), Eisenstein (1844, 1850), Cay-
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ley (1851), and Kronecker (1854), and is the subject of a

treatise by Bachmann (1872). Among the most recent writers

on Abelian equations is Pellet (1891).

Certain special equations of importance in geometry have

been the subject of study by Hesse, Steiner, Cayley, Clebsch^

Salmon, and Kummer. Such are equations of the ninth degree

determining the points of inflection of a curve of the third de-

gree, and of the twenty-seventh degree determining the points

in which a curve of the third degree can have contact of the

fifth order with a conic.

Symmetric Functions of the coefficients, and those which re-

main unchanged through some or all of the permutations of the

roots, are subjects of great importance in the present theory.

The first formulas for the computation of the symmetric func-

tions of the roots of an equation seem to have been worked out

by Newton, although Girard (1629) had given, without proof, a

formula for the power sum. In the eighteenth century Lagrange

(1768) and Waring (1770, 1782) contributed to the theory, but

the first tables, reaching to the tenth degree, appeared in 1809

in the Meyer- Hirsch Aufgabensammlung. In Cauchy's cele-

brated memoir on determinants (18 12) the subject began to

assume new prominence, and both he and Gauss (1816) made
numerous and valuable contributions to the theory. It is, how-

ever, since the discoveries by Galois that the subject has be-

come one of great importance. Cayley (1857) has given sim-

ple rules for the degree and weight of symmetric functions, and

he and Brioschi have simplified the computation of tables.

Methods of Elimination and of finding the resultant

(Bezout) or eliminant (De Morgan) occupied a number of

eighteenth-century algebraists, prominent among them being
Euler (1748), whose method, based on symmetric functions, was

improved by Cramer (1750) and Bezout (1764). The leading

steps in the development are represented by Lagrange (1770-71),

Jacobi, Sylvester (1840), Cayley (1848, 1857), Hesse (1843,

1859), Bruno (1859), and Katter (1876). Sylvester's dialytic

method appeared in 1841, and to him is also due (185 1) the
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name and a portion of the theory of the discriminant. Among
recent writers on the general theory may be mentioned Burn-

side and Pellet (from 1887).

Art. 7. Substitutions and Groups.

The Theories of Substitutions and Groups* are among the

most important in the whole mathematical field, the study of

groups and the search for invariants now occupying the atten-

tion of many mathematicians. The first recognition of the im-

portance of the combinatory analysis occurs in the problem of

forming an wth-degree equation having for roots m of the roots

of a given wth-degree equation {in < n). For simple cases

the problem goes back to Hudde (1659). Saunderson (1740)

noted that the determination of the quadratic factors of a bi-

quadratic expression necessarily leads to a sextic equation, and

Le Sceur (1748) and Waring (1762 to 1782) still further elabo-

rated the idea.

Lagrangef first undertook a scientific treatment of the the-

ory of substitutions. Prior to his time the various methods of

solving lower equations had existed rather as isolated artifices

than as a unified theory.;]; Through the great power of analy-

sis possessed by Lagrange (1770, 1 771) a common foundation

was discovered, and on this was built the theory of substitu-

tions. He undertook to examine the methods then known,
and to show a priori why these succeeded below the quintic,

but otherwise failed. In his investigation he discovered the

important fact that the roots of all resolvents (resolvantes, re-

duites) which he examined are rational functions of the roots

of the respective equations. To study the properties of these

functions he invented a " Calcul des Combinaisons," the first

*
Netto, E., Theory of Substitutions, translated by Cole; Cayley, A., Equa-

tions, Encyclopaedia Britannica, gth edition.

f Pierpont, James, Lagrange's Place in the Theory of Substitutions, Bulletin

of American Mathematical Society, Vol. I, p. 196.

} Matthiessen, L., Grundziige der antiken und modernen Algebra der littera-

len Gleichungen, Leipzig, 1878.
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important step towards a theory of substitutions. Mention

should also be made of the contemporary labors of Vander-

monde (1770) as foreshadowing the coming theory.

The next great step was taken by Ruffini* (1799). Begin-

ning like Lagrange with a discussion of the methods of solving

lower equations, he attempted the proof of the impossibility of

solving the quintic and higher equations. While the attempt

failed, it is noteworthy in that it opens with the classification

of the various "permutations" of the coefficients, using the

word to mean what Cauchy calls a "systeme des substitutions

conjuguees," or simply a "
systeme conjugueY' and Galois calls

a "
group of substitutions." Ruffini distinguishes what are now

called intransitive, transitive and imprimitive, and transitive

and primitive groups, and (1801) freely uses the group of an

equation under the name " Tassieme della permutazioni." He
also publishes a letter from Abbati to himself, in which the

group idea is prominent.

To Galois, however, the honor of establishing the theory of

groups is generally awarded. He found that if r
xt

r
3 ,

. . . rn are

the n roots of an equation, there is always a group of permuta-

tions of the rs such that (1) every function of the roots invari-

able by the substitutions of the group is rationally known, and

(2), reciprocally, every rationally determinable function of the

roots is invariable by the substitutions of the group. Galois

also contributed to the theory of modular equations and to that

of elliptic functions. His first publication on the group theory

was made at the age of eighteen (1829), but his contributions

attracted little attention until the publication of his collected

papers in 1846 (Liouville, Vol. XI).

Cayley and Cauchy were among the first to appreciate the

importance of the theory, and to the latter especially are due a

number of important theorems. The popularizing of the sub-

ject is largely due to Serret, who has devoted section IV of his

Burkhardt, H., Die Anfange der Gruppentheorie und Paolo Ruffini, Ab-

handlungen zur Geschichte der Mathematik, VI, 1892, p. 119. Italian by E. Pas-

cal, Brioschi's Annali di Matematica, 1894.
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algebra to the theory; to Camille Jordan, whose Traite des

Substitutions is a classic ;
and to Netto (1882), whose work has

been translated into English by Cole (1892). Bertrand, Her-

mite, Frobenius, Kronecker, and Mathieu have added to the

theory. The general problem to determine the number of

groups of n given letters still awaits solution.

But overshadowing all others in recent years in carrying on

the labors of Galois and his followers in the study of discontin-

uous groups stand Klein, Lie, Poincare, and Picard. Besides

these discontinuous groups there are other classes, one of

which, that of finite continuous groups, is especially important
in the theory of differential equations. It is this class which

Lie (from 1884) has studied, creating the most important of

the recent departments of mathematics, the theory of trans-

formation groups. Of value, too, have been the labors of

Killing on the structure of groups, Study's application of the

group theory to complex numbers, and the work of Schur and

Maurer.

Art. 8. Determinants.

The Theory of Determinants* may be said to take its

origin with Leibniz (1693), following whom Cramer (1750)
added slightly to the theory, treating the subject, as did his

predecessor, wholly in relation to sets of equations. The re-

current law was first announced by Bezout (1764). But it was
Vandermonde (1771) who first recognized determinants as inde-

pendent functions. To him is due the first connected exposi-
tion of the theory, and he may be called its formal founder.

Laplace (1772) gave the general method of expanding a deter-

minant in terms of its complementary minors, although Van-
dermonde had already given a special case. Immediately fol-

lowing, Lagrange (1773) treated determinants of the second

* Muir, T., Theory of Determinants in the Historical Order of its Develop-
ment, Part I, 1890; Baltzer, R., Theorie und Anwendung der Determinanten,
1881. The writer is under obligations to Professor Weld, who contributes

Chap. II, for valuable assistance in compiling this article.



Art. 8.] determinants. 537

and third order, possibly stopping here because the idea of

hyperspace was not then in vogue. Although contributing

nothing to the general theory, Lagrange was the first to apply

determinants to questions foreign to eliminations, and to him

are due many special identities which have since been brought

under well-known theorems. During the next quarter of a

century little of importance was done. Hindenburg (1784) and

Rothe (1800) kept the subject open, but Gauss (1801) made

the next advance. Like Lagrange, he made much use of de-

terminants in the theory of numbers. He introduced the word

"determinants" (Laplace had used " resultant "), though not

in the present signification,* but rather as applied to the dis-

criminant of a quantic. Gauss also arrived at the notion of

reciprocal determinants, and came very near the multiplication

theorem. The next contributor of importance is Binet (181 1,

1 81 2), who formally stated the theorem relating to the product

of two matrices of m columns and n rows, which for the special

case of m = n reduces to the multiplication theorem. On the

same day (Nov. 30, 1 8 12) that Binet presented his paper to the

Academy, Cauchy also presented one on the subject. In this

he used the word " determinant
M

in its present sense, summa-

rized and simplified what was then known on the subject, im-

proved the notation, and gave the multiplication theorem with

a proof more satisfactory than Binet's. He was the first to

grasp the subject as a whole
;
before him there were determi-

nants, with him begins their theory in its generality.

The next great contributor, and the greatest save Cauchy,

was Jacobi (from 1827). With him the word " determinant
"

received its final acceptance. He early used the functional

determinant which Sylvester has called the "
Jacobian," and in

his famous memoirs in Crelle for 1 841 he specially treats this

subject, as well as that class of alternating functions which

Sylvester has called "Alternants." But about the time of

Jacobi's closing memoirs, Sylvester (1839) anc* Cayley began

* " Numerum bb-ac, cuius indole proprietates formae (, b, c) imprimis pen-

dcre in sequentibus docebimus, determinantem huius uocabimus."
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their great work, a work which it is impossible to briefly sum-

marize, but which represents the development of the theory to

the present time.

The study of special forms of determinants has been the

natural result of the completion of the general theory. Axi-

symmetric determinants have been studied by Lebesgue, Hesse,

and Sylvester; per-symmetric determinants by Sylvester and

Hankel
;
circulants by Catalan, Spottiswoode, Glaisher, and

Scott; skew determinants and Pfaffians, in connection with the

theory of orthogonal transformation, by Cayley ;
continuants

by Sylvester ;
Wronskians (so called by Muir) by Christoffel

and Frobenius ; compound determinants by Sylvester, Reiss,

and Picquet ; Jacobians and Hessians by Sylvester ;
and sym-

metric gauche determinants by Trudi. Of the text-books on

the subject Spottiswoode's was the first. In America, Hanus

(1886) and Weld (1893) have published treatises.

Art. 9. Quantics.

The Theory of Quantics or Forms *
appeared in embryo in

the Berlin memoirs of Lagrange (1773, 1775), who considered

binary quadratic forms of the type ax 1

-f- bxy + cy
2

,
and estab-

lished the invariance of the discriminant of that type when

x -{- \y is put for x. He classified forms of that type accord-

ing to the sign of & ^ac, and introduced the ideas of trans-

formation and equivalence. Gauss f (1801) next took up the

subject, proved the invariance of the discriminants of binary

and ternary quadratic forms, and systematized the theory of

binary quadratic forms, a subject elaborated by H. J. S.

Smith, Eisenstein, Dirichlet, Lipschitz, Poincare, and Cayley.

Galois also entered the field, in his theory of groups (1829), and

*
Meyer, W. F., Bericht liber den gegenwartigen Stand der Invarianten-

theorie. jahresbericht der deutschen Mathematiker-Vereinigung, Vol. I,

1890-91; Berlin 1892, p. 97. See also the review by Franklin in Bulletin New
York Mathematical Society, Vol. Ill, p. 187 ; Biography of Cayley, Collected

Papers, VIII, p. ix, and Proceedings of Royal Society, 1895.

f See Art. 2.
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the first step towards the establishment of the distinct theory
is sometimes attributed to Hesse in his investigations of the

plane curve of the third order.

It is, however, to Boole (1841) that the real foundation of

the theory of invariants is generally ascribed. He first showed

the generality of the invariant property of the discriminant,,

which Lagrange and Gauss had found for special forms.

Inspired by Boole's discovery Cayley took up the study in a

memoir " On the Theory of Linear Transformations
"
(1845),

which was followed (1846) by investigations concerning co-

variants and by the discovery of the symbolic method of find-

ing invariants. By reason of these discoveries concerning
invariants and covariants (which at first he called "

hyperdeter-

minants ") he is regarded as the founder of what is variously

called Modern Algebra, Theory of Forms, Theory of Quanticsr

and the Theory of Invariants and Covariants. His ten memoirs.

on the subject began in 1854, and rank among the greatest

which have ever been produced upon a single theory. Syl-

vester soon joined Cayley in this work, and his originality and

vigor in discovery soon made both himself and the subject

prominent. To him are due (1851-54) the foundations of the

general theory, upon which later writers have largely built, as.

well as most of the terminology of the subject.

Meanwhile in Germany Eisenstein (1843) nad become aware

of the simplest invariants and covariants of a cubic and bi-

quadratic . form, and Hesse and Grassmann had both (1844)

touched upon the subject. But it was Aronhold (1849) who>

first made the new theory known. He devised the symbolic

method now common in Germany, discovered the invariants

of a ternary cubic and their relations to the discriminant, and,

with Cayley and Sylvester, studied those differential equations

which are satisfied by invariants and covariants of binary/

quantics. His symbolic method has been carried on by
Clebsch, Gordan, and more recently by Study (1889) and Stroh

(1890), in lines quite different from those of the English school..

In France Hermite early took up the work (185 1). He
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discovered (1854) the law of reciprocity that to every covariant

or invariant of degree p and order r of a form of the mXXi

order corresponds also a covariant or invariant of degree 111

and of order r of a form of the pth order. At the same time

(1854) Brioschi joined the movement, and his contributions

have been among the most valuable. Salmon's Higher Plane

Curves (1852) and Higher Algebra (1859) should also be men-

tioned as marking an epoch in the theory.

Gordan entered the field, as a critic of Cayley, in 1868. He
added greatly to the theory, especially by his theorem on the

Endlichkeit des Formensystems, the proof for which has since

been simplified. This theory of the finiteness of the number

of invariants and covariants of a binary form has since been

extended by Peano (1882), Hilbert (1884), and Mertens (1886).

Hilbert (1890) succeeded in showing the finiteness of the com-

plete systems for forms in n variables, a proof which Story has

simplified.

Clebsch* did more than any other to introduce into Ger-

many the work of Cayley and Sylvester, interpreting the pro-

jective geometry by their theory of invariants, and correlating

it with Riemann's theory of functions. Especially since the

publication of his work on forms (1871) the subject has at-

tracted such scholars as Weierstrass, Kronecker, Mansion,

Noether, Hilbert, Klein, Lie, Beltrami, Burkhardt, and many
others. On binary forms Faa di Bruno's work is well known,

as is Study's (1889) on ternary forms. De Toledo (1889) and

Elliott (1895) have published treatises on the subject.

Dublin University has also furnished a considerable corps

of contributors, among whom MacCullagh, Hamilton, Salmon,

Michael and Ralph Roberts, and Burnside may be especially

mentioned. Burnside, who wrote the latter part of Burnside

and Panton's Theory of Equations, has set forth a method of

transformation which is fertile in geometric interpretation and

hinds together binary and certain ternary forms.

* Klein's Evanston Lectures, Lect. I.
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The equivalence problem of quadratic and bilinear forms

has attracted the attention of Weierstrass, Kronecker, Chris-

toffel, Frobenius, Lie, and more recently of Rosenow (Crelle,

108), Werner (1889), Killing (1890), and Scheffers (1891). The

equivalence problem of non-quadratic forms has been studied

by ChristofTel. Schwarz (1872), Fuchs (1875-76), Klein (1877,

1884), Brioschi (1877), and Maschke (1887) have contributed

to the theory of forms with linear transformations into them-

selves. Cayley (especially from 1870) and Sylvester (1877)

have worked out the methods of denumeration by means of

generating functions. Differential invariants have been studied

by Sylvester, MacMahon, and Hammond. Starting from the

differential invariant, which Cayley has termed the Schwarzian

derivative, Sylvester (1885) has founded the theory of recipro-

cants, to which MacMahon, Hammond, Leudesdorf, Elliott,

Forsyth, and Halphen have contributed. Canonical forms have

been studied by Sylvester (185 1), Cayley, and Hermite (to

whom the term " canonical form
"

is due), and more recently

by Rosanes (1873), Brill (1882), Gundelfinger (1883), and Hil-

bert (1886).

The Geometric Theory of Binary Forms may be traced to

Poncelet and his followers. But the modern treatment has its

origin in connection with the theory of elliptic modular func-

tions, and dates from Dedekind's letter to Borchardt (Crelle,

1877). The names of Klein and Hurwitz are prominent in

this connection. On the method of nets (reseaux), another

geometric treatment of binary quadratic forms Gauss (1831),

Dirichlet (1850), and Poincare (1880) have written.

Art. 10. Calculus.

The Differential and Integral Calculus,* dating from Newv

ton and Leibniz, was quite complete in its general range a"

* Williamson, B., Infinitesimal Calculus, Encyclopaedia Britannica, gth edi

tion; Cantor, M., Geschichte der Mathematik, Vol. Ill, pp. 150-316; Vivanti, G.,

Note sur l'histoire de l'infiniment petit, Bibliotheca Mathematica, 1894, p. 1
,-

Mansion, P., Esquisse de l'histoire du calcul infinitesimal, Ghent, 1887. Le
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the close of the eighteenth century. Aside from the study of

first principles, to which Gauss, Cauchy, Jordan, Picard, Meray,

and those whose names are mentioned in connection with the

theory of functions, have contributed, there must be men-

tioned the development of symbolic methods, the theory of

definite integrals, the calculus of variations, the theory of dif-

ferential equations, and the numerous applications of the

Newtonian calculus to physical problems. Among those who

have prepared noteworthy general treatises are Cauchy (1821),

Raabe (1839-47), Duhamel (1856), Sturm (1857-59), Bertrand

(1864), Serret (1868), Jordan (2d ed., 1893), and Picard (1891-93).

A recent contribution to analysis which promises to be valu-

able is Oltramare's Calcul de Generalization (1893).

Abel seems to have been the first to consider in a general

way the question as to what differential expressions can be

integrated in a finite form by the aid of ordinary functions, an

investigation extended by Liouville. Cauchy early undertook

the general theory of determining definite integrals, and the

subject has been prominent during the century. Frullani's

theorem (1821), Bierens de Haan's work on the theory (1862)

and his elaborate tables (1867), Dirichlet's lectures (1858) em-

bodied in Meyer's treatise (1871), and numerous memoirs of

Legendre, Poisson, Plana, Raabe, Sohncke, Schlomilch, Elliott,

Leudesdorf, and Kronecker are among the noteworthy con-

tributions.

Eulerian Integrals were first studied by Euler and after-

wards investigated by Legendre, by whom they were classed as

Eulerian integrals of the first and second species, as follows :

/ xn
~\i x)

n~ x

dx, I e~
xxn~ 1

dx, although these were not the

exact forms of Euler's study. If n is integral, it follows that

/ e~*xn
~ xdx = n !, but if n is fractional it is a transcendent

function. To it Legendre assigned the symbol Pt
and it is

deux centieme anniversaire de ^invention du calcul differentiel ; Mathesis,

Vol. IV, p. 163.
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now called the gamma function. To the subject Dirichlet has

contributed an important theorem (Liouville, 1839), which has

been elaborated by Liouville, Catalan, Leslie Ellis, and others.

On the evaluation of Fx and \ogTx Raabe (1843-44), Bauer

(1859), a d Gudermann (1845) have written. Legendre's great

table appeared in 18 16.

Symbolic Methods may be traced back to Taylor, and the

analogy between successive differentiation and ordinary ex-

ponentials had been observed by numerous writers before the

nineteenth century. Arbogast (1800) was the first, however,

to separate the symbol of operation from that of quantity in a

differential equation. Francois (18 12) and Servois (18 14) seem

to have been the first to give correct rules on the subject.

Hargreave (1848) applied these methods in his memoir on dif-

ferential equations, and Boole freely employed them. Grass-

mann and Hankel made great use of the theory, the former in

studying equations, the latter in his theory of complex num-

bers.

The Calculus of Variations* may be said to begin with a

problem of Johann Bernoulli's (1696). It immediately occu-

pied the attention of Jakob Bernoulli and the Marquis de

l'Hopital, but Euler first elaborated the subject. His contri-

butions began in 1733, and his Elementa Calculi Variationum

gave to the science its name. Lagrange contributed extensively

to the theory, and Legendre (1786) laid down a method,

not entirely satisfactory, for the discrimination of max-

ima and minima. To this discrimination Brunacci (1810),

Gauss (1829), Poisson (1831), Ostrogradsky (1834), and Jacobi

(1837) have been among the contributors. An important gen-

eral work is that of Sarrus (1842) which was condensed and im-

proved by Cauchy (1844). Other valuable treatises and me-

moirs have been written by Strauch (1849), Jellett (1850), Hesse

(1857), Clebsch (1858), and Carll (1885), but perhaps the most

*
Carll, L. B., Calculus of Variations, New York, 1885, Chap. V; Tod-

hunter, I., History of the Progress of the Calculus of Variations, London,

1 861 : Reiff, R., Die AnfSnge der Variationsrechnung, Mathematisch-natur-

wissenschaftliche Mittheilungen, Tubingen, 1887, p. 90.



534 HISTORY OF MODERN MATHEMATICS. [CHAP. XI.

important work of the century is that of Weierstrass. His

celebrated course on the theory is epoch-making, and it may
be asserted that he was the first to place it on a firm and un-

questionable foundation.

The Application of the Infinitesimal Calculus to problems
in physics and astronomy was contemporary with the origin of

the science. All through the eighteenth century these appli-

cations were multiplied, until at its close Laplace and Lagrange
had brought the whole range of the study of forces into the

realm of analysis. To Lagrange (1773) we owe the introduc-

tion of the theory of the potential* into dynamics, although

the name "
potential function

"
and the fundamental memoir

of the subject are due to Green (1827, printed in 1828). The

name ''potential" is due to Gauss (1840), and the distinction

between potential and potential function to Clausius. With

its development are connected the names of Dirichlet, Rie-

mann, Neumann, Heine, Kronecker, Lipschitz, Christoffel,

Kirchhoff, Beltrami, and many of the leading physicists of the

century.

It is impossible in this place to enter into the great variety

of other applications of analysis to physical problems. Among
them are the investigations of Euler on vibrating chords ;

Sophie Germain on elastic membranes
; Poisson, Lame, Saint-

Venant, and Clebsch on the elasticity of three-dimensional bod-

ies; Fourier on heat diffusion; Fresnel on light; Maxwell, Helm-

holtz, and Hertz on electricity; Hansen, Hill, and Gylden on

astronomy; Maxwell on spherical harmonics; Lord Rayleigh on

acoustics; and the contributions of Dirichlet, Weber, Kirchhoff,

F. Neumann, Lord Kelvin, Clausius, Bjerknes, MacCullagh,
and Fuhrmann to physics in general. The labors of Helm-

holtz should be especially mentioned, since he contributed to

the theories of dynamics, electricity, etc., and brought his great

analytical powers to bear on the fundamental axioms of me-

chanics as well as on those of pure mathematics.

* Bacharach, M., Abriss der Geschichte der Potentialtheorie, 1883. This

contains an extensive bibliography.
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Art. 11. Differential Equations.

The Theory of Differential Equations
* has been called by

Lief the most important of modern mathematics. The influ-

ence of geometry, physics, and astronomy, starting with New-

ton and Leibniz, and further manifested through the Bernoullis,

Riccati, and Clairaut, but chiefly through d'Alembert and

Euler, has been very marked,- and especially on the theory of

linear partial differential equations with constant coefficients.

The first method of integrating linear ordinary differential

equations with constant coefficients is due to Euler, who made
dny , A dn

' y

y is*
the solution of his type, -j-

n -f- A l , w-1 + . . . + Any = O, de-

pend on that of the algebraic equation of the th degree,

F{z) = zn -\-A l
zn

~ l

-\-. . .-\-A n = o, in which zk takes the place of

dky
-y k (k = i, 2, . . . n). This equation F(z) = o, is the "char-

acteristic
"
equation considered later by Monge and Cauchy.

The theory of linear partial differential equations may be

said to begin with Lagrange (1779 to 1785). Monge (1809)

treated ordinary and partial differential equations of the first

and second order, uniting the theory to geometry, and intro-

ducing the notion of the "characteristic," the curve represented

by F(z) = o, which has recently been investigated by Darboux,

*
Cantor, M., Geschichte der Mathematik, Vol. Ill, p. 429 ; Schlesinger, L.

Handbuch derTheorie der linearen Differentialgleichungen, Vol. I, 1895, an ex-

cellent historical view ;
review by Mathews in Nature, Vol. LI I, p. 313; Lie, S.,

Zur allgemeinen Theorie der partiellen Differentialgleichungen, Berichte liber

die Verhandlungen der Gesellschaft der Wissenschaften zu Leipzig, 1895;

Mansion, P., Theorie der partiellen Differentialgleichungen ier Ordnung, Ger-

man by Maser, Leipzig, 1892, excellent on history ; Craig, T., Some of the De

velopments in the Theory of Ordinary Differential Equations, 1878-1893, Bul-

letin New York Mathematical Society, Vol. II, p. 119 ; Goursat, E., Legonssur

l'integration des equations aux derivees partielles du premier ordre, Paris, 1891;

Burkhardt, H., and Heffier, L., in Mathematical Papers of Chicago Congress,

p. 13 and p. 96.

\
" In der ganzen modernerj Mathematik ist die Theorie der Differential-

gleichungen die wichtigste Discipiin
"
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Levy, and Lie. Pfaff (1814, 18 15) gave the first general method

of integrating partial differential equations of the first order, a

method of which Gauss (181 5) at once recognized the value

and of which he gave an analysis. Soon after, Cauchy (18 19)

gave a simpler method, attacking the subject from the analyt-

ical standpoint, but using the Monge characteristic. To him

is also due the theorem, corresponding to the fundamental

theorem of algebra, that every differential equation defines a

function expressible by means of a convergent series, a propo-

sition more simply proved by Briot and Bouquet, and also by
Picard (1891). Jacobi (1827) also gave an analysis of Pfaff's

method, besides developing an original one (1836) which

Clebsch published (1862). Clebsch's own method appeared in

1866, and others are due to Boole (1859), Korkine (1869), and

A. Mayer (1872). Pfaff's problem has been a prominent sub-

ject of investigation, and with it are connected the names of

Natani (1859), Clebsch (1861, 1862), DuBois-Reymond (1869),

Cayley, Baltzer, Frobenius, Morera, Darboux, and Lie. The
next great improvement in the theory of partial differential

equations of the first order is due to Lie (1872), by whom the

whole subject has been placed on a rigid foundation. Since

about 1870, Darboux, Kovalevsky, Meray, Mansion, Grain-

dorge, and Imschenetsky have been prominent in tin's line.

The theory of partial differential equations of the second and

higher orders, beginning with Laplace and Monge, was notably
advanced by Ampere (1840). Imschenetsky* has summarized

the contributions to 1873, but the theory remains in an

imperfect state.

The integration of partial differential equations with three

or more variables was the object of elaborate investigations by

Lagrange, and his name is still connected with certain subsid-

iary equations. To him and to Charpit, who did much to

develop the theory, is due one of the methods for integrating

the general equation with two variables, a method which now
bears Charpit's name.

* Grunert's Archiv fur Mathematik, Vol. LIV.
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The theory of singular solutions of ordinary and partial

differential equations has been a subject of research from the

time of Leibniz, but only since the middle of the present cen-

tury has it received especial attention. A valuable but little-

Jcnown work on the subject is that of Houtain (1854). Dar-

;boux (from 1873) has been a leader in the theory, and in the

geometric interpretation of these solutions he has opened a

field which has been worked by various writers, notably Caso-

rati and Cayley. To the latter is due (1872) the theory of

singular solutions of differential equations of the first order as

at present accepted.

The primitive attempt in dealing with differential equations

liad in view a reduction to quadratures. As it had been the hope
-of eighteenth-century algebraists to find a method for solving

the general equation of the nth degree, so it was fhe hope of

analysts to find a general method for integrating any differen-

tial equation. Gauss (1799) showed, however, that the dif-

ferential equation meets its limitations very soon unless

complex numbers are introduced. Hence analysts began to

substitute the study of functions, thus opening a new and fer-

tile field. Cauchy was the first to appreciate the importance

of this view, and the modern theory may be said to begin with

him. Thereafter the real question was to be, not whether a

solution is possible by means of known functions or their in-

tegrals, but whether a given differential equation suffices for

the definition of a function of the independent variable or

variables, and if so, what are the characteristic properties of

this function.

Within a half-century the theory of ordinary differential

-equations has come to be one of the most important branches

of analysis, the theory of partial differential equations remain-

ing as one still to be perfected. The difficulties of the general

problem of integration are so manifest that all classes of inves-

tigators have confined themselves to the properties of the in-

tegrals in the neighborhood of certain given points. The new

departure took its greatest inspiration from two memoirs by
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Fuchs (Crelle, 1866, 1868), a work elaborated by Thome and

Frobenius. Collet has been a prominent contributor since

1869, although his method for integrating a non-linear system

was communicated to Bertrand in 1868. Clebsch *
(1873) at-

tacked the theory along lines parallel to those followed in his

theory of Abelian integrals. As the latter can be classified

according to the properties of the fundamental curve which,

remains unchanged under a rational transformation, so Clebsch

proposed to classify the transcendent functions defined by the

differential equations according to the invariant properties of

the corresponding surfaces f=o under rational one-to-one

transformations.

Since 1870 Lie's f labors have put the entire theory of dif-

ferential equations on a more satisfactory foundation. He has

shown that the integration theories of the older mathema-

ticians, which had been looked upon as isolated, can by the

introduction of the concept of continuous groups of transfor-

mations be referred to a common source, and that ordinary

differential equations which admit the same infinitesimal trans-

formations present like difficulties of integration. He has also

emphasized the subject of transformations of contact (Beruh-

rungstransformationen) which underlies so much of the recent

theory. The modern school has also turned its attention to

the theory of differential invariants, one of fundamental im-

portance and one which Lie has made prominent. With this

theory are associated the names of Cayley, Cockle, Sylvester,

Forsyth, Laguerre, and Halphen. Recent writers have shown

the same tendency noticeable in the work of Monge and

Cauchy, the tendency to separate into two schools, the one

inclining to use the geometric diagram, and represented by

Schwarz, Klein, and Goursat, the other adhering to pure anal-

ysis, of which Weierstrass, Fuchs, and Frobenius are types.

The work of Fuchs and the theory of elementary divisors have

formed the basis of a late work by Sauvage (1895). Poincare's

* Klein's Evanston Lectures, Lect. I.

f Klein's Evanston Lectures, Lect. II, III.
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recent contributions are also very notable. His theory of

Fuchsian equations (also investigated by Klein) is connected

with the general theory. He has also brought the whole sub-

ject into close relations with the theory of functions. Appell
has recently contributed to the theory of linear differential

equations transformable into themselves by change of the func-

tion and the variable. Helge von Koch has written on infinite

determinants and linear differential equations. Picard has un-

dertaken the generalization of the work of Fuchs and Poincar6

in the case of differential equations of the second order. Fabry

(i885)has generalized the normal integrals of Thome, integrals

which Poincare has called "
integrates anormales," and which

Picard has recently studied. Riquier has treated the question

of the existence of integrals in any differential system and

given a brief summary of the history to 1895.* The number of

contributors in recent times is very great, and includes, besides

those already mentioned, the names of Brioschi, Konigsberger,

Peano, Graf, Hamburger, Graindorge, Schlafli, Glaisher, Lom-

mel, Gilbert, Fabry, Craig, and Autonne.

Art. 12. Infinite Series.

The Theory of Infinite Series f in its historical develop-

ment has been divided by Reiff into three periods: (1) the

period of Newton and Leibniz, that of its introduction;

(2) that of Euler, the formal period ; (3) the modern, that of

the scientific investigation of the validity of infinite series, a

period beginning with Gauss. This critical period begins with

the publication of Gauss's celebrated memoir on the series

jj x A
'

, I
~x + in l8l2 Euler

*
Riquier, C, Memoire sur l'existence des integrates dans un systeme dif-

ferentiel quelconque, etc. Memoires des Savants etrangers, Vol. XXXII, No. 3.

f Cantor, M., Geschichte der Mathematik, Vol. Ill, pp. 53, 71 ; Reift, R.,

Geschichte der unendlichen Reihen, Tubingen, 1889 ; Cajori, F., Bulletin

New York Mathematical Society, Vol. I, p. 184; History of Teaching of Mathe-

matics in United States, p. 361.
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had already considered this series, but Gauss was the first to

master it, and under the name "
hypergeometric series

"
(due

to PfafT) it has since occupied the attention of Jacobi, Kummer,

Schwarz, Cayley, Goursat, and numerous others. The partic-

ular series is not so important as is the standard of criticism

which Gauss set up, embodying the simpler criteria of con-

vergence and the questions of remainders and the range of

convergence.

Gauss's contributions were not at once appreciated, and

the next to call attention to the subject was Cauchy (1821),

who may be considered the founder of the theory of con-

vergence and divergence of series. He was one of the first to

insist on strict tests of convergence ;
he showed that if two

series are convergent their product is not necessarily so
;
and

with him begins the discovery of effective criteria of converg-

ence and divergence. It should be mentioned, however, that

these terms had been introduced long before by Gregory (1668),

that Euler and Gauss had given various criteria, and that

Maclaurin had anticipated a few of Cauchy's discoveries.

Cauchy advanced the theory of power series by his expansion

of a complex function in such a form. His test for convergence

is still one of the most satisfactory when the integration in-

volved is possible.

Abel was the next important contributor. In his memoir

ivyi 'Jfliffl I )

(1826) on the series 1 + x
-|

j

-x*

_|_ . . . he corrected

certain of Cauchy's conclusions, and gave a completely scien-

tific summation of the series for complex values of m and x.

He was emphatic against the reckless use of series, and showed

the necessity of considering the subject of continuity in ques-

tions of convergence.

Cauchy's methods led to special rather than general criteria,

and the same may be said of Raabe (1832), who made the first

elaborate investigation of the subject, of De Morgan (from

1842), whose logarithmic test DuBois-Reymond (1873) and

Pringsheim (1889) have shown to fail within a certain region ;



Art, 12.]
INFINITE SERIES. &41

of Bertrand (1842), Bonnet (1843), Malmsten (1846, 1847, th^

latter without integration); Stokes (1847), Paucker (1852),.

Tchebichef (1852), and Arndt 1853). General criteria began

with Kummer (1835), and have been studied by Eisenstein

(1847), Weierstrass in his various contributions to the theory

of functions, Dini (1867), DuBois-Reymond (1873), and many
others. Pringsheim's (from 1889) memoirs present the most

complete general theory.

The Theory of Uniform Convergence was treated by

Cauchy (1821), his limitations being pointed out by Abel, but

the first to attack it successfully were Stokes and Seidel

(1847-48). Cauchy took up the problem again (1853), acknowl-

edging Abel's criticism, and reaching the same conclusions

which Stokes had already found. Thome used the doctrine

(1866), but there was great delay in recognizing the importance

of distinguishing between uniform and non-uniform converg-

ence, in spite of the demands of the theory of functions.

Semi-Convergent Series were studied by Poisson (1823),

who also gave a general form for the remainder of the Mac-

laurin formula. The most important solution of the problem

is due, however, to Jacobi (1834), who attacked the question of

the remainder from a different standpoint and reached a differ-

ent formula. This expression was also worked out, and

another one given, by Malmsten (1 847). Schlomilch (Zeitschrif t,

Vol. I, p. 192, 1856) also improved Jacobi'sremainder,and showed

the relation between the remainder and Bernoulli's function

F{x) = i_|- 2* +... + (* i)\ Genocchi (1852) has further

contributed to the theory.

Among the early writers was Wronski, whose "
loi supreme

*'

(181 5) was hardly recognized until Cayley (1873) brought it

into prominence. Transon (1874), Ch. Lagrange (1884),

Echols, and Dickstein * have published of late various memoirs

on the subject.

Interpolation Formulas have been given by various writers

* Bibliotheca Mathematica, 1892-94; historical.
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from Newton to the present time. Lagrange's theorem is well

known, although Euler had already given an analogous form,

as are also Olivier's formula (1827), and those of Minding

{1830), Cauchy (1837), Jacobi (1845), Grunert (1850, 1853),

Christoffel (1858), and Mehler (1864).

Fourier's Series* were being investigated as the result of

physical considerations at the same time that Gauss, Abel,

and Cauchy were working out the theory of infinite series.

Series for the expansion of sines and cosines, of multiple arcs

in powers of the sine and cosine of the arc had been treated

by Jakob Bernoulli (1702) and his brother Johann (1701) and

still earlier by Viete. Euler and Lagrange had simplified the

subject, as have, more recently, Poinsot, Schroter, Glaisher,

and Kummer. Fourier (1807) set for himself a different prob-

lem, to expand a given function of x in terms of the sines or

cosines of multiples of x, a problem which he embodied in his

Theorie analytique de la Chaleur (1822). Euler had already

given the formulas for determining the coefficients in the

series; and Lagrange had passed over them without recog-

nizing their value, but Fourier was the first to assert and at-

tempt to prove the general theorem. Poisson (1820-23) also

attacked the problem from a different standpoint. Fourier

did not, however, settle the question of convergence of his

series, a matter left for Cauchy (1826) to attempt and for

Dirichlet (1829) to handle in a thoroughly scientific manner.

Dirichlet's treatment (Crelle, 1829), while bringing the theory
of trigonometric series to a temporary conclusion, has been

the subject of criticism and improvement by Riemann (1854),

Heine, Lipschitz, Schlafli, and DuBois-Reymond. Among
other prominent contributors to the theory of trigonometric
and Fourier series have been Dini, Hermite, Halphen, Krause,

Byerly and Appell.

* Historical Summary by Bocher, Chap. IX of Byerlv's Fourier's Series

and Spherical Harmonics, Boston, 1893 ; Sachse, A., Essai historique sur la

representation d'une fonction .... par une serie trigonometrique. Bulletin

des Sciences mathematiques, Part I, 1880, pp. 43, 83.
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Art. 13. Theory of Functions.

The Theory of Functions * may be said to have its first

development in Newton's works, although algebraists had al-

ready become familiar with irrational functions in considering

cubic and quartic equations. Newton seems first to have

grasped the idea of such expressions in his consideration of

symmetric functions of the roots of an equation. The word

was employed by Leibniz (1694), but in connection with the

Cartesian geometry. In its modern sense it seems to have

been first used by Johann Bernoulli, who distinguished between

algebraic and transcendent functions. He also used (1718) the

function symbol <p. Clairaut (1734) used IIx, $x, Ax, for va-

rious functions of x> a symbolism substantially followed by
d'Alembert (1747) and Euler (1753). Lagrange (1772, 1797,

1806) laid the foundations for the general theory, giving to

the symbol a broader meaning, and to the symbols f,0,F,... v

f, 0', F', . . . their modern signification. Gauss contributed

to the theory, especially in his proofs of the fundamental

theorem of algebra, and discussed and gave name to the theory

of "conforme Abbildung," the "
orthomorphosis

"
of Cayley.

Making Lagrange's work a point of departure, Cauchy so

greatly developed the theory that he is justly considered one

of its founders. His memoirs extend over the period 1814-

185 1, and cover subjects like those of integrals with imaginary

limits, infinite series and questions of convergence, the applica-

tion of the infinitesimal calculus to the theory of complex

*
Brill, A., and Noether, M., Die Entwickelung der Theorie der algebrai-

schen Functionen in alterer und neuerer Zeit, Bericht erstattet der Deutschen

Mathematiker-Vereinigung, Jahresbericht, Vol. II, 'pp. 107-566, Berlin, 1894;

KOnigsberger, L., Zur Geschichte der Theorie der elliptischen Transcendenten

in den Jahren 1826-29, Leipzig, 1879; Williamson, B
, Infinitesimal Calculus,

Encyclopaedia Britannica; Schlesinger, L., Differentialgleichungen, Vol. I, 1895;

Casorati, F., Teorica delle funzioni di variabili complesse, Vol. I, 1868; Klein's

Evanston Lectures. For bibliography and historical notes, see Harkness and

Morley's Theory of Functions, 1893, and Forsyth's Theory of Functions, 1893;

Enestrom, G., Note historique sur les symboles. . . . Bibliotheca Mathematica,

1891, p 89.
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numbers, the investigation of the fundamental laws of mathe-

matics, and numerous other lines which appear in the general

theory of functions as considered to-day. Originally opposed

to the movement started by Gauss, the free use of complex

numbers, he finally became, like Abel, its advocate. To him

is largely due the present orientation of mathematical research,

making prominent the theory of functions, distinguishing be-

tween classes of functions, and placing the whole subject upon
a rigid foundation. The historical development of the gen-

eral theory now becomes so interwoven with that of special

classes of functions, and notably the elliptic and Abelian, that

economy of space requires their treatment together, and hence

a digression at this point.

The Theory of Elliptic Functions* is usually referred for its

origin to Landen's (1775) substitution of two elliptic arcs for a

single hyperbolic arc. But Jakob Bernoulli (1691) had sug-

gested the idea of comparing non-congruent arcs of the same

curve, and Johann had followed up the investigation. Fagnano

(1716) had made similar studies, and both Maclaurin (1742) and

d'Alembert (1746) had come upon the borderland of elliptic

functions. Euler (from 1761) had summarized and extended

the rudimentary theory, showing the necessity for a convenient

notation for elliptic arcs, and prophesying (1766) that "such

signs will afford a new sort of calculus of which I have here at-

tempted the exposition of the first elements." Euler's inves-

tigations continued until about the time of his death (1783),

and to him Legendre attributes the foundation of the theory.

Euler was probably never aware of Landen's discovery.

It is to Legendre, however, that the theory of elliptic func-

tions is largely due, and on it his fame to a considerable degree

depends. His earlier treatment (1786) almost entirely sub-

stitutes a strict analytic for the geometric method. For forty

years he had the theory in hand, his labor culminating in his

*
Enneper, A., Elliptische Funktionen, Theorie und Geschichte, Halle,

1890; Konigsberger, L., Zur Geschichte der Theorie der elliptischen Tran-

scendenten in den Jahren 1826-29, Leipzig, 1879.
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Traite des Fonctions elliptiques et des Integrates Euleriennes

(1825-28). A surprise now awaiting him is best told in his

own words: "Hardly had my work seen the light its name

could scarcely have become known to scientific foreigners,

when I learned with equal surprise and satisfaction that two

young mathematicians, MM. Jacobi of Konigsberg and Abel

of Christiania, had succeeded by their own studies in perfect-

ing considerably the theory of elliptic functions in its highest

parts." Abel began his contributions to the theory in 1825,

and even then was in possession of his fundamental theorem

which he communicated to the Paris Academy in 1826. This

communication being so poorly transcribed was not published

in full until 1841, although the theorem was sent to Crelle

(1829) just before Abel's early death. Abel discovered the

double periodicity of elliptic functions, and with him began
the treatment of the elliptic integral as a function of the

amplitude.

Jacobi, as also Legendre and Gauss, was especially cordial in

praise of the delayed theorem of the youthful Abel. He calls

it a "monumentum sere perennius," and his name "das

Abel'sche Theorem "
has since attached to it. The functions

of multiple periodicity to which it refers have been called

Abelian Functions. Abel's work was early proved and eluci-

dated by Liouville and Hermite. Serret and Chasles in the

Comptes Rendus, Weierstrass (1853), Clebsch and Gordan in

their Theorie der Abel'schen Functionen (1866), and Briot and

Bouquet in their two treatises have greatly elaborated the

theory. Riemann's *
(1857) celebrated memoir in Crelle pre-

sented the subject in such a novel form that his treatment was

slow of acceptance. He based the theory of Abelian integrals

and their inverse, the Abelian functions, on the idea of the sur-

face now so well known by his name, and on the correspond-

ing fundamental existence theorems. Clebsch, starting from

*
Klein, Evanston Lectures, p. 3 ; Riemann and Modern Mathematics,

transited by Ziwet, Bulletin of American Mathematical Society, Vol. I, p. 165;

Burkhardt, H., Vortrag iiber Riemann, Gottingen, 1892.
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an algebraic curve defined by its equation, made the subject

more accessible, and generalized the theory of Abelian integrals

to a theory of algebraic functions with several variables, thus

creating a branch which has been developed by Noether,

Picard, and Poincare\ The introduction of the theory of in-

variants and projective geometry into the domain of hyper-

elliptic and Abelian functions is an extension of Clebsch's

scheme. In this extension, as in the general theory of Abelian

functions, Klein has been a leader. With the development of

the theory of Abelian functions is connected a long list of

names, including those of Schottky, Humbert, C. Neumann,

Fricke, Konigsberger, Prym, Schwarz, Painlev, Hurwitz,

Bfioschi, Borchardt, Cayley, Forsyth, and Rosenhain, besides

others already mentioned.

Returning to the theory of elliptic functions, Jacobi (1827)

began by adding greatly to Legendre's work. He created a

new notation and gave name to the " modular equations
"
of

which he made use. Among those who have written treatises

upon the elliptic-function theory are . Briot and Bouquet,

Laurent, Halphen, Konigsberger, Hermite, Durege, and Cayley.

The introduction of the subject into the Cambridge Tripos

(1873), and the fact that Cayley 's only book was devoted to it,

have tended to popularize the theory in England.

The Theory of Theta Functions was the simultaneous and

independent creation of Jacobi and Abel (1828). Gauss's

notes show that he was aware of the properties of the theta

functions twenty years earlier, but he never published his in-

vestigations. Among the leading contributors to the theory
are Rosenhain (1846, published in 185 1) and Gopel(i847), who
connected the double theta functions with the theory of Abelian

functions of two variables and established the theory of hyper-

elliptic functions in a manner corresponding to the Jacobian

theory of elliptic functions. Weierstrass has also developed
the theory of theta functions independently of the form of their

space boundaries, researches elaborated by Konigsberger (1865)

to give the addition theorem. Riemann has completed the
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investigation of the relation between the theory of the theta

and the Abelian functions, and has raised theta functions to

their present position by making them an essential part of his

theory of Abelian integrals. H. J. S. Smith has included

among his contributions to this subject the theory of omega
functions. Among the recent contributors are Krazer and

Prym (1892), and Wirtinger (1895).

Cayley was a prominent contributor to the theory of

periodic functions. His memoir (1845) on doubly periodic

functions extended Abel's investigations on doubly infinite

products. Euler had given singly infinite products for sin x
y

cos x, and Abel had generalized these, obtaining for the

elementary doubly periodic functions expressions for sn x>

en x, dn x. Starting from these expressions of Abel's Cayley
laid a complete foundation for his theory of elliptic functions.

Eisenstein (1847) followed, giving a discussion from the stand-

point of pure analysis, of a general doubly infinite product,

and his labors, as supplemented by Weierstrass, are classic.

The General Theory of Functions has received its present

form largely from the works of Cauchy, Riemann, and Weier-

strass. Endeavoring to subject all natural laws to interpreta-

tion by mathematical formulas, Riemann borrowed his methods

from the theory of the potential, and found his inspiration in

the contemplation of mathematics from the standpoint of the

concrete. Weierstrass, on the other hand, proceeded from the

purely analytic point of view. To Riemann* is due the idea

of making certain partial differential equations, which express

the fundamental properties of all functions, the foundation of

a general analytical theory, and of seeking criteria for the

determination of an analytic function by its discontinuities

and boundary conditions. His theory has been elaborated by
Klein (1882, and frequent memoirs) who has materially ex-

tended the theory of Riemann's surfaces. Clebsch, Liiroth,

and later writers have based on this theory their researches on

*
Klein, F.. Riemann and Modern Mathematics, translated by Ziwet,

Bulletin of American Mathematical Society, Vol. I, p. 165.
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loops. Riemann's speculations were not without weak points,,

and these have been fortified in connection with the theory of

the potential by C. Neumann, and from the analytic standpoint

by Schwarz.

In both the theory of general and of elliptic and other

functions, Clebsch was prominent. He introduced the system-

atic consideration of algebraic curves of deficiency I, bring-

ing to bear on the theory of elliptic functions the ideas of

modern projective geometry. This theory Klein has gener-

alized in his Theorie der elliptischen Modulfunctionen, and

has extended the method to the theory of hyperelliptic and

Abelian functions.

Following Riemann came the equally fundamental and

original and more rigorously worked out theory of Weierstrass.

His early lectures on functions are justly considered a land-

mark in modern mathematical development. In particular,

his researches on Abelian transcendents are perhaps the most

important since those of Abel and Jacobi. His contributions

to the theory of elliptic functions, including the introduction

of the function f{u\ are also of great importance. His con-

tributions to the general function theory include much of the

symbolism and nomenclature, and many theorems. He first

announced (1866) the existence of natural limits for analytic

functions, a subject further investigated by Schwarz, Klein,

and Fricke. He developed the theory of functions of complex
variables from its foundations, and his contributions to the

theory of functions of real variables were no less marked.

Fuchs has been a prominent contributor, in particular (1872)

on the general form of a function with essential singularities.

On functions with an infinite number of essential singularities

Mittag-Lenrer (from 1882) has written and contributed a

fundamental theorem. On the classification of singularities of

functions Guichard (1883) has summarized and extended the

researches, and Mittag-Lenrer and G. Cantor have contributed

to the same result. Laguerre (from 1882) was the first to

discuss the " class
M

of transcendent functions, a subject to



-ART. 13.] THEORY OF FUNCTIONS. 549

which Poincare, Cesaro, Vivanti, and Hermite have also con-

tributed. Automorphic functions, as named by Klein, have

been investigated chiefly by Poincare^ who has established their

general classification. The contributors to the theory include

Schwarz, Fuchs, Cayley, Weber, Schlesinger, and Burnside.

The Theory of Elliptic Modular Functions, proceeding from

Eisenstein's memoir (1847) and the lectures of Weierstrass on

elliptic functions, has of late assumed prominence through the

influence of the Klein school. Schlafli (1870), and later Klein,

Dyck, Gierster, and Hurwitz, have worked out the theory
which Klein and Fricke have embodied in the recent Vorle-

sungen uber die Theorie der elliptischen Modulfunctionen

(1890-92). In this theory the memoirs of Dedekind (1877),

Klein (1878), and Poincare" (from 1881) have been among the

most prominent.

For the names of the leading contributors to the general

and special theories, including among others Jordan, Hermite,

Holder, Picard, Biermann, Darboux, Pellet, Reichardt, Burk-

hardt, Krause, and Humbert, reference must be had to the

Brill-Noether Bericht.

Of the various special algebraic functions space allows men-

tion of but one class,that bearing Bessel's name. Bessel's func-

tions * of the zero order are found in memoirs of Daniel Ber-

noulli (1732) and Euler (1764), and before the end of the eigh-

teenth century all the Bessel functions of the first kind and

integral order had been used. Their prominence as special

functions is due, however, to Bessel (181617), who put them

in their present form in 1824. Lagrange's series (1770), with

Laplace's extension (1777), had been regarded as the best

method of solving Kepler's problem (to express the variable

quantities in undisturbed planetary motion in terms of the

time or mean anomaly), and to improve this method Bessel's

functions were first prominently used. Hankel (1869), Lom-
mel (from 1868), F. Neumann, Heine, Graf (1893), Gray and

* Bocher, M., A bit of mathematical history, Bulletin of New York Mathe-

matical Society, Vol. II, p. 107.
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Mathews (1895), and others have contributed to the theory.

Lord Rayleigh (1878) has shown the relation between Bessel's

and Laplace's functions, but they are nevertheless looked upon
as a distinct system of transcendents. Tables of Bessel's func-

tions were prepared by Bessel (1824), by Hansen (1843), and

by Meissel (1888).

Art. 14. Probabilities and Least Squares.

The Theory of Probabilities and Errors* is, as applied to

observations, largely a nineteenth-century development. The

doctrine of probabilities dates, however, as far back as Fermat

and Pascal (1654). Huygens (1657) gave the first scientific

treatment of the subject, and Jakob Bernoulli's Ars Conjectandi

(posthumous, 171 3) and De Moivre's Doctrine of Chances

( 171 8)fraised the subject to the plane of a branch of mathematics.

The theory of errors may be traced back to Cotes's Opera
Miscellanea (posthumous, 1722), but a memoir prepared by

Simpson in 1755 (printed 1756) first applied the theory to the

discussion of errors of observation. The reprint (1757) of this

memoir lays down the axioms that positive and negative errors

are equally probable, and that there are certain assignable
limits within which all errors may be supposed to fall ; con-

tinuous errors are discussed and a probability curve is given.

Laplace (1774) made the first attempt to deduce a rule for the

combination of observations from the principles of the theory
of probabilities. He represented the law of probability of

errors by a curve y = (p(x), x being any error and y its proba-

bility, and laid down three properties of this curve : (1) It is

symmetric as to the jj/-axis; (2) the ^r-axis is an asymptote, the

probability of the error 00 being o; (3) the area enclosed is 1,

it being certain that an error exists. He deduced a formula

*
Merriman, M., Method of Least Squares, New York, 1884, p. 182 ; Trans-

actions of Connecticut Academy, 1877, Vol. IV, p. 151, with complete bibliog-

raphy; Todhunter, I., History of the Mathematical Theory of Probability,

1865; Cantor, M., Geschichte der Mathematik, Vol. Ill, p. 316.

J-EnestrOm, G., Review of Cantor, Bibliotheca Mathematica, 1896, p. 20.
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for the mean of three observations. He also gave (1781) a

formula for the law of facility of error (a term due to Lagrange,

1774), but one which led to unmanageable equations. Daniel

Bernoulli (1778) introduced the principle of the maximum

product of the probabilities of a system of concurrent errors.

The Method of Least Squares is due to Legendre (1805),

who introduced it in his Nouvelles methodes pour la determi-

nation des orbites des coinetes. In ignorance of Legendre's

contribution, an Irish-American writer, Adrain, editor of " The

Analyst" (1808), first deduced the law of facility of error,

<p(x)
= ce'^^, c and h being constants depending on pre-

cision of observation. He gave two proofs, the second being

essentially the same as Herschcl's (1850). Gauss gave the first

proof which seems to have been known in Europe (the third

after Adrain's) in 1809. To him is due much of the honor of

placing the subject before the mathematical world, both as to

the theory and its applications.

Further proofs were given by Laplace (1810, 1812), Gauss

(1823), Ivory (1825, 1826), Hagen (1837), Bessel (1838), Donkin

(1844, 1856), and Crofton (1870). Other contributors have

been Ellis (1844), De Morgan (1864), Glaisher (1872), and Schi-

aparelli (1875). Peters's (1856) formula for r> the probable

error of a single observation, is well known.*

Among the contributors to the general theory of probabil-

ities in the nineteenth century have been Laplace, Lacroix

(1816), Littrow (1833), Quetelet (1853), Dedekind (i860), Hel-

mert (1872), Laurent (1873), Liagre, Didion, and Pearson.

De Morgan and Boole improved the theory, but added little

that was fundamentally new. Czuber has done much both in his

own contributions (1884, 1 891), and in his translation (1879)

of Meyer. On the geometric side the influence of Miller and

The Educational Times has been marked, as also that of such

contributors to this journal as Crofton, McColl, Wolstenholme,

Watson, and Artemas Martin.

* Bulletin of New York Mathematical Society, Vol. II, p. 57.
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Art. 15. Analytic Geometry.

The History of Geometry* may be roughly divided into

the four periods: (i) The synthetic geometry of the Greeks,

practically closing with Archimedes
; (2) The birth of analytic

geometry, in which the synthetic geometry of Guldin, De-

sargues, Kepler, and Roberval merged into the coordinate geom-

etry of Descartes and Fermat
; (3) 1650 to 1800, characterized

by the application of the calculus to geometry, and including

the names of Newton, Leibnitz, the Bernoullis, Clairaut, Mac-

laurin, Euler, and Lagrange, each an analyst rather than a ge-

ometer; (4) The nineteenth century, the renaissance of pure

geometry, characterized by the descriptive geometry of Monge,
the modern synthetic of Poncelet, Steiner, von Staudt, and

Cremona, the modern analytic founded by Plticker, the non-

Euclidean hypothesis of Lobachevsky and Bolyai, and the

more elementary geometry of the triangle founded by Lemoine.

It is quite impossible to draw the line between the analytic

and the synthetic geometry of the nineteenth century, in their

historical development, and Arts. 15 and 16 should be read to-

gether.

The Analytic Geometry which Descartes gave to the world

in 163/was confined to plane curves, and the various important

properties common to all algebraic curves were soon discovered.

To the theory Newton contributed three celebrated theorems

on the Enumeratio linearum tertii ordinis f (1704), while others

are due to Cotes (1722), Maclaurin, and Waring (1762, 1772,

*
Loria, G., II passato e il presente delle principali teorie geometriche.

Memorie Accademia Torino, 1887; translated into German by F. Schutte

under the title Die hauptsachlichsten Theorien der Geometrie in ihrer iriiheren

und heutigen Entwickelung, Leipzig, 1888; Chasles, M., Apercu historique

sur l'origine et le developpement des methodes en Geometrie, 1889 I Chasles,

M., Rapport sur les Progres de la Geometrie, Paris, 1870; Cayley, A., Curves,

Encyclopaedia Britannica; Klein, F., Evanston Lectures on Mathematics, New-

York, 1894 ;
A. V. Braunmuhl, Historische Studie iiber die organische Er-

zeugung ebener Curven, Dyck's Katalog mathematischer Modelle, 1892.

+ Ball, W. W. R., On Newton's classification of cubic curves. Transactions

of London Mathematical Society, 1891, p. 104.
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etc.). The scientific foundations of the theory of plane curves

may be ascribed, however, to Euler (1748) and Cramer (1750).

Euler distinguished between algebraic and transcendent curves,

and attempted a classification of the former. Cramer is well

known for the "
paradox

" which bears his name, an obstacle

which Lame (1818) finally removed from the theory. To

Cramer is also due an attempt to put the theory of singulari-

ties of algebraic curves on a scientific foundation, although in

a modern geometric sense the theory was first treated by
Poncelet.

Meanwhile the study of surfaces was becoming prominent.

Descartes had suggested that his geometry could be extended

to three-dimensional space, Wren (1669) had discovered the

two systems of generating lines on the hyperboloid of one

sheet, and Parent (1700) had referred a surface to three coor-

dinate planes. The geometry of three dimensions began to

assume definite shape, however, in a memoir of Clairaut's (1 73 1),

in which, at the age of sixteen, he solved with rare elegance

many of the problems relating to curves of double curvature.

Euler (1760) laid the foundations for the analytic theory of

curvature of surfaces, attempting the classification of those

of the second degree as the ancients had classified curves

of the second order. Monge, Hachette, and other members of

that school entered into the study of surfaces with great zeal.

Monge introduced the notion of families of surfaces, and dis-

covered the relation between the theory of surfaces and the

integration of partial differential equations, enabling each to be

advantageously viewed from the standpoint of the other. The

theory of surfaces has attracted a long list of contributors in

the nineteenth century, including most of the geometers whose

names are mentioned in the present article.*

Mobius began his contributions to geometry in 1823, and

four years later published his Barycentrische Calcul. In this

great work he introduced homogeneous coordinates with the

* For details see Loria, II passato e il presente, etc.
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attendant symmetry of geometric formulas, the scientific

exposition of the principle of signs in geometry, and the

establishment of the principle of geometric correspondence

simple and multiple. He also (1852) summed up the classifi-

cation of cubic curves, a service rendered by Zeuthen (1874)

for quartics. To the period of Mobius also belong Bobillier

(1827), who first used trilinear coordinates, and Bellavitis, whose

contributions to analytic geometry were extensive. Ger-

gonne's labors are mentioned in the next article.

Of all modern contributors to analytic geometry, Pliicker

stands foremost. In 1828 he published the first volume of his

Analytisch-geometrische Entwickelungen, in which appeared
the modern abridged notation, and which marks the beginning

of a new era for analytic geometry. In the second volume

(1831) he sets forth the present analytic form of the principle

of duality. To him is due (1833) the general treatment of foci

for curves of higher degree, and the complete classification of

plane cubic curves (1835) whick had been so frequently tried

before him. He also gave (1839) an enumeration of plane
curves of the fourth order, which Bragelogne and Euler had

attempted. In 1842 he gave his celebrated " six equations""

by which he showed that the characteristics of a curve (order,

class, number of double points, number of cusps, number of

double tangents, and number of inflections) are known
when any three are given. To him is also due the first scien-

tific dual definition of a curve, a system of tangential coordi-

nates, and an investigation of the question of double tangents,

a question further elaborated by Cayley (1847, 1858), Hesse

(1847), Salmon (1858), and Dersch (1874). The theory of

ruled surfaces, opened by Monge, was also extended by him.

Possibly the greatest service rendered by Pliicker was the in-

troduction of the straight line as a space element, his first

contribution (1865) being followed by his well-known treatise

on the subject (1868-69). In this work he treats certain general

properties of complexes, congruences, and ruled surfaces, as

well as special properties of linear complexes and congruen-
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ces, subjects also considered by Kummer and by Klein and

others of the modern school. Tt is not a little due to Plucker

that the concept of 4- and hence ^-dimensional space, already

suggested by Lagrange and Gauss, became the subject of

later research. Riemann, Helmholtz, Lipschitz, Kroneckerr

Klein, Lie, Veronese, Cayley, d'Ovidio, and many others have

elaborated the theory. The regular hypersolids in 4-dimen-

sional space have been the subject of special study by Scheffler,

Rudel, Hoppe, Schlegel, and Stringham.

Among Jacobi's contributions is the consideration (1836) of

curves and groups of points resulting from the intersection of

algebraic surfaces, a subject carried forward by Reye (1869),

To Jacobi is also due the conformal representation of the

ellipsoid on a plane, a treatment completed by Schering (1858).

The number of examples of conformal representation of sur-

faces on planes or on spheres has been increased by Schwarz

(1869) and Amstein (1872).

In 1844 Hesse, whose contributions to geometry in general

are both numerous and valuable, gave the complete theory of

inflections of a curve, and introduced the so-called Hessian

curve as the first instance of a covariant of a ternary form.

He also contributed to the theory of curves of the third order,

and generalized the Pascal and Brianchon theorems on a

spherical surface. Hesse's methods have recently been elabo-

rated by Gundelfinger (1894).

Besides contributing extensively to synthetic geometry,

Chasles added to the theory of curves of the third and fourth

degrees. In the method of characteristics which he worked

out may be found the first trace of the Abzahlende Geometrie*

which has been developed by Jonquieres, Halphen (1875), an <l

Schubert (1876, 1879), ancl to which Clebsch, Lindemann, and

Hurwitz have also contributed. The general theory of corre-

spondence starts with Geometry, and Chasles (1864) undertook

*
Loria, G., Notizie storiche sulla Geometria numerativa. Bibliotheca.

Mathematica, 1888, pp. 39, 67 ; 1889, p. 23.
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the first special researches on the correspondence of algebraic

curves, limiting his investigations, however, to curves of defi-

ciency zero. Cayley (1866) carried this theory to curves of

higher deficiency, and Brill (from 1873) completed the theory.

Cayley's
* influence on geometry was very great. He early

carried on Pliicker's consideration of singularities of a curve,

and showed (1864, 1866) that every singularity may be con-

sidered as compounded of ordinary singularities so that the

"six equations
"
apply to a curve with any singularities what-

soever. He thus opened a field for the later investigations of

Noether, Zeuthen, Halphen, and H. J. S. Smith. Cayley's

theorems on the intersection of curves (1843) and the deter-

mination of self-corresponding points for algebraic correspond-

ences of a simple kind are fundamental in the present theory,

subjects to which Bacharach, Brill, and Noether have also con-

tributed extensively. Cayley added much to the theories of

rational transformation and correspondence, showing the distinc-

tion between the theory of transformation of spaces and that of

correspondence of loci. His investigations on the bitangents of

plane curves, and in particular on the twenty-eight bitangents of

a non-singular quartic, his developments of Pliicker's conception

of foci, his discussion of the osculating conies of curves and of

the sextactic points on a plane curve, the geometric theory

of the invariants and covariants of plane curves, are all note-

worthy. He was the first to announce (1849) tne twenty-seven

lines which lie on a cubic surface, he extended Salmon's theory of

reciprocal surfaces, and treated (1869) the classification of cubic

surfaces, a subject already discussed by Schlafli. He also con-

tributed to the theory of scrolls (skew-ruled surfaces), orthog-

onal systems of surfaces, the wave surface, etc., and was the

first to reach (1845) any very general results in the theory of

curves of double curvature, a theory in which the next great

advance was made (1882) by Halphen and Noether. Among
Cayley's other contributions to geometry is his theory of the

Absolute, a figure in connection with which all metrical prop-

erties of a figure are considered.

Biographical Notice in Cayley's Collected papers, Vol. VIII.
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Clebsch* was also prominent in the study of curves and

surfaces. He first applied the algebra of linear transformation to

geometry. He emphasized the idea of deficiency (Geschlecht)

of a curve, a notion which dates back to Abel, and applied the

theory of elliptic and Abelian functions to geometry, using it

for the study of curves. Clebsch (1872) investigated the shapes

of surfaces of the third order. Following him, Klein attacked

the problem of determining all possible forms of such surfaces,

and established the fact that by the principle of continuity all

forms of real surfaces of the third order can be derived from

the particular surface having four real conical points. Zeuthen

(1874) has discussed the various forms of plane curves of the

fourth order, showing the relation between his results and

those of Klein on cubic surfaces. Attempts have been made

to extend the subject to curves of the nth order, but no gen-

eral classification has been made. Quartic surfaces have been

studied by Rohn (1887) but without a complete enumeration,

and the same writer has contributed (1881) to the theory of

Kummer surfaces.

Lie has adopted Plucker's generalized space element and ex-

tended the theory. His sphere geometry treats the subject

from the higher standpoint of six homogeneous coordinates,

as distinguished from the elementary sphere geometry with

but five and characterized by the conformal group, a geometry
studied by Darboux. Lie's theory of contact transformations,

with its application to differential equations, his line and

sphere complexes, and his work on minimum surfaces are all

prominent.

Of great help in the study of curves and surfaces and of

the theory of functions are the models prepared by Dyck,

Brill, O. Henrici, Schwarz, Klein, Schonflies, Kummer, and

others.f

The Theory of Minimum Surfaces has been developed along

*
Klein, Evanston Lectures, Lect. I.

f Dyck, W., Katalog mathematischer und mathematisch-physikalischer

Modelle, Miinchen, 1892 ;
Deutsche Universitatsausstellung, Mathematical

Papers of Chicago Congress, p. 49.
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with the analytic geometry in general. Lagrange (1760-61)

gave the equation of the minimum surface through a given:

contour, and Meusnier (1776, published in 1785) also studied

the question. But from this time on for half a century little

that is noteworthy was done, save by Poisson (18 13) as to cer-

tain imaginary surfaces. Monge (1784) and Legendre (1787)

connected the study of surfaces with that of differential equa-

tions, but this did not immediately affect this question. Scherk

(1835) added a number of important results, and first applied

the labors of Monge and Legendre to the theory. Catalan

(1842), Bjorling (1844), and Dini (1865) have added to the

subject. But the most prominent contributors have been

Bonnet, Schwarz, Darboux, and Weierstrass. Bonnet (from

1853) has set forth a new system of formulas relative. to the

general theory of surfaces, and completely solved the problem
of determining the minimum surface through any curve and

admitting in each point of this curve a given tangent plane.

Weierstrass (1866) has contributed several fundamental theo-

rems, has shown how to find all of the real algebraic minimum

surfaces, and has shown the connection between the theory of

functions of an imaginary variable and the theory of minimum
surfaces.

Art. 16. Modern Geometry.

Descriptive,* Projective, and Modern Synthetic Geometry
are so interwoven in their historic development that it is even

more difficult to separate them from one another than from

the analytic geometry just mentioned. Monge had been in

possession of his theory for over thirty years before the publi-

cation of his Geometrie Descriptive (1800), a delay due to the

jealous desire of the military authorities to keep the valuable

secret. It is true that certain of its features can be traced

back to Desargues, Taylor, Lambert, and Frezier, but it was

Monge who worked it out in detail as a science, although

* Wiener, Chr., Lehrbuch der darstellenden Geometrie, Leipzig, 1884-87;

Geschichte der darstellenden Geometrie, 1884.
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Lacroix (1795), inspired by Monge's lectures in the Ecole

Polytechnique, published the first work on the subject. After

Monge's work appeared, Hachette (1812, 1818, 1821) added

materially to its symmetry, subsequent French contributors

being Leroy (1842), Olivier (from 1845), de ^a Gournerie (from

i860), Vallee, de Fourcy, Adhemar, and others. In Germany
leading contributors have been Ziegler (1843), Anger (1858),

and especially Fiedler (3d edn. 1883-88) and Wiener (1884-87).

At this period Monge by no means confined himself to the de-

scriptive geometry. So marked were his labors in the analytic

geometry that he has been called the father of the modern

theory. He also set forth the fundamental theorem of recip-

rocal polars, though not in modern language, gave some treat-

ment of ruled surfaces, and extended the theory of polars to

quadrics.*

Monge and his school concerned themselves especially with

the relations of form, and particularly with those of surfaces

and curves in a space of three dimensions. Inspired by the

general activity of the period, but following rather the steps of

Desargues and Pascal, Carnot treated chiefly the metrical rela-

tions of figures. In particular he investigated these relations

as connected with the theory of transversals, a theory whose

fundamental property of a four-rayed pencil goes back to

Pappos, and which, though revived by Desargues, was set forth

for the first time in its general form in Carnot's Geometrie de

Position (1803), and supplemented in his Thorie des Trans-

versales (1806). In these works he introduced negative mag-

nitudes, the general quadrilateral and quadrangle, and numer-

ous other generalizations of value to the elementary geometry
of to-day. But although Carnot's work was important and

many details are now commonplace, neither the name of the

theory nor the method employed have endured. The present

Geometry of Position (Geometrie der Lage) has little in com-

mon with Carnot's G6omtrie de Position.

* On recent development of graphic methods and the influence of Monge

upon this branch of mathematics, see Eddy, H. T., Modern Graphical Develop-

ments, Mathematical Papers of Chicago Congress (New York, 1896), p. 58.
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Projective Geometry had its origin somewhat later thart

the period of Monge and Carnot. Newton had discovered

that all curves of the third order can be derived by central

projection from five fundamental types. But ill spite of this,

fact the theory attracted so little attention for over a century

that its origin is generally ascribed to Poncelet. A prisoner

in the Russian campaign, confined at SaratofT on the Volga

(1812-14), "prive," as he says,
" de toute espece de livres et

de secours, surtout distrait par les malheurs de ma patrie et les

miens propres," he still had the vigor of spirit and the leisure

to conceive the great work which he published (1822) eight

years later. In this work was first made prominent the power
of central projection in demonstration and the power of the

principle of continuity in research. His leading idea was the

study of projective properties, and as a foundation principle he

introduced the anharmonic ratio, a concept, however, which

dates back to Pappos and which Desargues (1639) had also-

used. Mobius, following Poncelet, made much use of the an-

harmonic ratio in his Barycentrische Calciil (1827), but under

the name "
Doppelschnitt-Verhaltniss

"
(ratio bisectionalis), a

term now in common use under Steiner's abbreviated form
"
Doppelverhaltniss." The name " anharmonic ratio

"
or

" function
"
(rapport anharmonique, or fonction anharmonique)

is due to Chasles, and " cross-ratio
"
was coined by Clifford.

The anharmonic point and line properties of conies have been

further elaborated by Brianchon, Chasles, Steiner, and von

Staudt. To Poncelet is also due the theory of "
figures homo-

logiques," the perspective axis and perspective center (called

by Chasles the axis and center of homology), an extension of

Carnot's theory of transversals, and the " cordes idales
"

of

conies which Pliicker applied to curves of all orders. He also

discovered what Salmon has called " the circular points at in-

finity," thus completing and establishing the first great principle

of modern geometry, the principle of continuity. Brianchon

(1806), through his application of Desargues's theory of polars,
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completed the foundation which Monge had begun for Ponce-

let's (1829) theory of reciprocal polars.

Among the most prominent geometers contemporary with

Poncelet was Gergonne, who with more propriety might be

ranked as an analytic geometer. He first (1813) used the term
"
polar" in its modern geometric sense, although Servois (1811)

had used the expression
"
pole." He was also the first (1825

26) to grasp the idea that the parallelism which Maurolycus,

Snell, and Viete had noticed is a fundamental principle. This

principle he stated and to it he gave the name which it now

bears, the Principle of Duality, the most important, after that

of continuity, in modern geometry. This principle of geomet-
ric reciprocation, the discovery of which was also claimed by
Poncelet, has been greatly elaborated and has found its way
into modern algebra and elementary geometry, and has recently

been extended to mechanics by Genese. Gergonne was the

first to use the word "class" in describing a curve, explicitly

defining class and degree (order) and showing the duality

between the two. He and Chasles were among the first to

study scientifically surfaces of higher order.

Steiner (1832) gave the first complete discussion of the pro-

jective relations between rows, pencils, etc., and laid the foun-

dation for the subsequent development of pure geometry. He
practically closed the theory of conic sections, of the corre-

sponding figures in three-dimensional space and of surfaces of

the second order, and hence with him opens the period of

special study of curves and surfaces of higher order. His treat-

ment of duality and his application of the theory of projective

pencils to the generation of conies are masterpieces. The

theory of polars of a point in regard to a curve had been

studied by Bobillier and by Grassmann, but Steiner (1848)

showed that this theory can serve as the foundation for the

study of plane curves independently of the use of coordinates,

and introduced those noteworthy curves covariant to a given

curve which now bear the names of himself, Hesse, and Cayley.

This whole subject has been extended by Grassmann, Chasles,
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Cremona, and Jonquieres. Steiner was the first to make prom-

inent (1832) an example of correspondence of a more com-

plicated nature than that of Poncelet, Mobius, Magnus, and

Chasles. His contributions, and those of Gudermann, to the

geometry of the sphere were also noteworthy.

While Mobius, Plucker, and Steiner were at work in

Germany, Chasles was closing the geometric era opened in

France by Monge. His Apercu Historique (1837) *s a classic,

and did for France what Salmon's works did for algebra and

geometry in England, popularizing the researches of earlier

writers and contributing both to the theory and the nomen-

clature of the subject. To him is due the name " homo-

graphic" and the complete exposition of the principle as

applied to plane and solid figures, a subject which has received

attention in England at the hands of Salmon, Townsend, and

H. J. S. Smith.

Von Staudt began his labors after Plucker, Steiner, and

Chasles had made their greatest contributions, but in spite of

this seeming disadvantage he surpassed them all. Joining the

Steiner school, as opposed to that of Plucker, he became the

greatest exponent of pure synthetic geometry of modern times.

He set forth (1847, 1856-60) a complete, pure geometric system
in which metrical geometry finds no place. Projective proper-

ties foreign to measurements are established independently of

number relations, number being drawn from geometry instead

of conversely, and imaginary elements being systematically

introduced from the geometric side. A projective geometry
based on the group containing all the real projective and dual-

istic transformations, is developed, imaginary transformations

being also introduced. Largely through his* influence pure

geometry again became a fruitful field. Since his time the

distinction between the metrical and projective theories has

been to a great extent obliterated * the metrical properties

*
Klein, F., Erlangen Programme of 1872, Haskell's translation, Bulletin

of New York Mathematical Society, Vol. II, p. 215.
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being considered as projective relations to a fundamental con-

figuration, the circle at infinity common for all spheres. Un-

fortunately von Staudt wrote in an unattractive style, and to

Reye is due much of the popularity which now attends the

subject.

Cremona began his publications in 1862. His elementary
work on projective geometry (1875) in Leudesdorf's translation

is familiar to English readers. His'contributions to the theory

of geometric transformations are valuable, as also his works on

plane curves, surfaces, etc.

In England Mulcahy, but especially Townsend (1863), and

Hirst, a pupil of Steiner's, opened the subject of modern

geometry. Clifford did much to make known the German

theories, besides himself contributing to the study of polars

and the general theory of curves.

Art. 17. Elementary Geometry.

Trigonometry and Elementary Geometry have also been

affected by the general mathematical spirit of the century.
In trigonometry the general substitution of ratios for lines in

the definitions of functions has simplified the treatment, and

certain formulas have been improved and others added.*

The convergence of trigonometric series, the introduction of

the Fourier series, and the free use of the imaginary have

already been mentioned. The definition of the sine and cosine

by series, and the systematic development of the theory on

this basis, have been set forth by Cauchy (1821), Lobachevsky

{1833), and others. The hyperbolic trigonometry,f already
founded by Mayer and Lambert, has been popularized and

further developed by Gudermann (1830), Houel, and Laisant

{1871), and projective formulas and generalized figures have

* Todhunter, I., History, of certain formulas of spherical trigonometry,

Philosophical Magazine, 1873.

f Gunther, S., Die Lehre von den gewohnlichen und verallgemeinerten

Hyperbelfunktionen, Halle, 1881; Chrystal, G., Algebra, Vol. II, p. 288.
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been introduced, notably by Gudermann, Mobius, Poncelet,

and Steiner. Recently Study has investigated the formulas,

of spherical trigonometry from the standpoint of the modern

theory of functions and theory of groups, and Macfarlane has

generalized the fundamental theorem of trigonometry for

three-dimensional space.

Elementary Geometry has been even more affected.

Among the many contributions to the theory may be men-

tioned the following: That of Mobius on the opposite senses

of lines, angles, surfaces, and solids
;
the principle of duality

as given by Gergonne and Poncelet
;
the contributions of De

Morgan to the logic of the subject ;
the theory of transversals

as worked out by Monge, Brianchon, Servois, Carnot, Chasles,

and others ; the theory of the radical axis, a property dis-

covered by the Arabs, but introduced as a definite concept by
Gaultier (1813) and used by Steiner under the name of " line

of equal power
"

;
the researches of Gauss concerning inscrip-

tible polygons, adding the 17- and 257-gon to the list below the

1000-gon ;
the theory of stellar polyhedra as worked out by

Cauchy, Jacobi, Bertrand, Cayley, Mobius, Wiener, Hess,

Hersel, and others, so that a whole series of bodies have been

added to the four Kepler-Poinsot regular solids
; and the re-

searches of Muir on stellar polygons. These and many other

improvements now find more or less place in the text-books

of the day.

To these must be added the recent Geometry of the Tri-

angle, now a prominent chapter in elementary mathematics.

Crelle (18 16) made some investigations in this line, Feuerbach

(1822) soon after discovered the properties of the Nine-Point

Circle, and Steiner also came across some of the properties of

the triangle, but none of these followed up the investigation.

Lemoine *
(1873) was the first to take up the subject in a sys-

*
Smith, D. E., Biography of Lemoine, American Mathematical Monthly,

Vol. Ill, p. 29; Mackay, J. S., various articles on modern geometry in Proceed-

ings Edinburgh Mathematical Society, various years; Vigarie. E\. Geometrie du

triangle. Articles in recent numbers of Journal de Mathematiques speciales,

Mathesis> and Proceedings of the Association francaise pour Tavancement des
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tematic way, and he has contributed extensively to its de-

velopment. His theory of " transformation continue" and his

*'

geometrographie
"
should also be mentioned. Brocard's con-

tributions to the geometry of the triangle began in 1877.

Other prominent writers have been Tucker, Neuberg, Vigarie,

Emmerich, M'Cay, Longchamps, and H. M. Taylor. The

theory is also greatly indebted to Miller's work in The Educa-

tional Times, and to Hoffmann's Zeitschrift.

The study of linkages was opened by Peaucellier (1864),

who gave the first theoretically exact method for drawing a

straight line. Kempe and Sylvester have elaborated the

subject.

In recent years the ancient problems of trisecting an angle,

doubling the cube, and squaring the circle have all been settled

by the proof of their insolubility through the use of compasses
and straight edge.*

Art. 18. Non-Euclidean Geometry.

The Non-Euclidean Geometry f is a natural result of the

futile attempts which had been made from the time of Proklos

to the opening of the nineteenth century to prove the fifth

postulate (also called the twelfth axiom, and sometimes the

*
Klein, F., VortrEge iiber ausgew&hlten Fragen; Rudio, F., Das Problem

von der Quadratur des Zirkels. Naturforschende Gesellschaft Vierteljahr-

schrift, 1890; Archimedes, Huygens, Lambert, Legendre (Leipzig, 1892).

f Stackel and Engel, Die Theorie der Parallellinien von Euklid bis auf

Gauss, Leipzig, 1895; Halsted, G. B., various contributions: Bibliography of

Hyperspace and Non-Euclidean Geometry, American Journal of Mathematics,

Vols. I, II; The American Mathematical Monthly, Vol. I; translations of Loba-

chevsky's Geometry, Vasiliev's address on Lobachevsky, Saccheri's Geome-

try, Bolyai's work and his life; Non-Euclidean and Hyperspaces, Mathe-

matical Papers of Chicago Congress, p. 92. Loria, G., Die hauptsachlichsten

Theorien der Geometrie, p. 106
; Karagiannides, A., Die Nichteuklidische

Geometrie vom Alterthum bis zur Gegenwart, Berlin, 1893; McClintock, E.,

On the early history of Non-Euclidean Geometry, Bulletin of New York Mathe-

matical Society, Vol. II, p. 144; Poincar6, Non-Euclidean Geom., Nature,

45:404; Articles on Parallels and Measurement in Encyclopaedia Britaneica,

9th edition; Vasiliev's address (German by Engel) also appears in the Abhand-

lungen zur Geschichte der Mathematik, 1895.
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eleventh or thirteenth) of Euclid. The first scientific investU

gation of this part of the foundation of geometry was made by
Saccheri (1733), a work which was not looked upon as a pre-

cursor of Lobachevsky, however, until Beltrami (1889) called

attention to the fact. Lambert was the next to question the

validity of Euclid's postulate, in his Theorie der Parallellinien

(posthumous, 1786), the most important of many treatises on

the subject between the publication of Saccheri's work and

those of Lobachevsky and Bolyai. Legendre also worked in

the field, but failed to bring himself to view the matter outside

the Euclidean limitations.

During the closing years of the eighteenth century Kant's*

doctrine of absolute space, and his assertion of the necessary

postulates of geometry, were the object of much scrutiny and

attack. At the same time Gauss was giving attention to the

fifth postulate, though on the side of proving it. It was at

one time surmised that Gauss was the real founder of the non-

Euclidean geometry, his influence being exerted on Loba-

chevsky through his friend Bartels, and on Johann Bolyai

through the father Wolfgang, who was a fellow student of

Gauss's. But it is now certain that Gauss can lay no claim to

priority of discovery, although the influence of himself and

of Kant, in a general way, must have had its effect.

Bartels went to Kasan in 1807, and Lobachevsky was his

pupil. The latter's lecture notes show that Bartels never

mentioned the subject of the fifth postulate to him, so that his.

investigations, begun even before 1823, were made on his own
motion and his results were wholly original. Early in 1826

he sent forth the principles of his famous doctrine of parallels,

based on the assumption that through a given point more than

one line can be drawn which shall never meet a given line

coplanar with it. The theory was published in full in 1829-30,

and he contributed to the subject, as well as to other branches

of mathematics, until his death.

*
Fink, E., Kant als Mathematiker, Leipzig, 1889.
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Johann Bolyai received through his father, Wolfgang, some

of the inspiration to original research which the latter had

received from Gauss. When only twenty-one he discovered,

at about the same time as Lobachevsky, the principles of non-

Euclidean geometry, and refers to them in a letter of Novem-

ber, 1823. They were committed to writing in 1825 and

published in 1832. Gauss asserts in his correspondence with

Schumacher (1831-32) that he had brought out a theory

along the same lines as Lobachevsky and Bolyai, but the publi-

cation of their works seems to have put an end to his investi-

gations. Schweikart was also an independent discoverer of the

non-Euclidean geometry, as his recently recovered letters

show, but he never published anything on the subject, his work

on the theory of parallels (1807), like that of his nephew
Taurinus (1825), showing no trace of the Lobachevsky-Bolyai
idea.

The hypothesis was slowly accepted by the mathematical

world. Indeed it was about forty years after its publication

that it began to attract any considerable attention. Houel

(1866) and Flye St. Marie (1871) in France, Riemann (1868),

Helmholtz (1868), Frischauf (1872), and Baltzer (1877) in Ger-

many, Beltrami (1872) in Italy, de Tilly (1879) m Belgium,

Clifford in England, and Halsted (1878) in America, have

been among the most active in making the subject popular.

Since 1880 the theory may be said to have become generally

understood and accepted as legitimate.*

Of all these contributions the most noteworthy from the

scientific standpoint is that of Riemann. In his Habilitations-

schrift (1854) he applied the methods of analytic geometry to

the theory, and suggested a surface of negative curvature,

which Beltrami calls
"
pseudo-spherical," thus leaving Euclid's

geometry on a surface of zero curvature midway between his

own and Lobachevsky 's. He thus set forth three kinds of

* For an excellent summary of the results of the hypothesis, see an

article by McClintock, The Non-Euclidian Geometry, Bulletin of New York

Mathematical Society, Vol. II, p. 1.
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geometry, Bolyai having noted only two. These Klein

(1871) has called the elliptic (Riemann's), parabolic (Euclid's),

and hyperbolic (Lobachevsky's).

Starting from this broader point of view* there have con-

tributed to the subject many of the leading mathematicians of

the last quarter of a century, including, besides those already

named, Cayley, Lie, Klein, Newcomb, Pasch, C. S. Peirce,

Killing, Fiedler, Mansion, and McClintock. Cayley 's contribu-

tion of his " metrical geometry
"
was not at once seen to be

identical with that of Lobachevsky and Bolyai. It remained

for Klein (1871) to show this, thus simplifying Cayley's treat-

ment and adding one of the most important results of the

entire theory. Cayley's metrical formulas are, when the

Absolute is real, identical with those of the hyperbolic geome-

try ;
when it is imaginary, with the elliptic ;

the limiting case

between the two gives the parabolic (Euclidean) geometry.
The question raised by Cayley's memoir as to how far pro-

jective geometry can be defined in terms of space without

the introduction of distance had already been discussed by
von Staudt (1857) and has since been treated by Klein (1873)

and by Lindemann (1876).

Art. 19. Bibliography.

The following are a few of the general works on the history

of mathematics in the nineteenth century, not already men-

tioned in the foot-notes. For a complete bibliography of recent

works the reader should consult the Jahrbuch liber die Fort-

schritte der Mathematik, the Bibliotheca Mathematica, or the

Revue Semestrielle, mentioned below.

Abhandlungen zur Geschichte der Mathematik (Leipzig).

Ball, W. W. R., A short account of the history of mathematics

(London, 1893).

Ball, W. W. R., History of the study of mathematics at Cam-

bridge (London, 1889).

Ball, W. W. R., Primer of the history of mathematics (London,

1895).

*
Klein, Evanston Lectures, Lect. IX.
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Bibliotheca Mathematica, G. Enestrom, Stockholm. Quarterly.
Should be consulted for bibliography of current articles and works

on history of mathematics.

Bulletin des Sciences Mathematiques (Paris, Hidme
Partie).

Cajori, F., History of Mathematics (New York, 1894).

Cayley, A., Inaugural address before the British Association,

1883. Nature, Vol. XXVIII, p. 491.

Dictionary of National Biography. London, not completed.
Valuable on biographies of British mathematicians.

D'Ovidio, Enrico, Uno sguardo alle origini ed alio sviluppo della

Matematica Pura (Torino, 1889).

Dupin, Ch., Coup d'ceil sur quelques progres des Sciences mathe-

matiques, en France, 1830-35. Comptes Rendus, 1835.

Encyclopaedia Britannica. Valuable biographical articles by
Cayley, Chrystal, Clerke, and others.

Fink, K., Geschichte der Mathematik (Tubingen, 1890). Bib-

liography on p. 255.

Gerhardt, C. J., Geschichte der Mathematik in Deutschland

(Munich, 1877).

Graf, J. H., Geschichte der Mathematik und der Naturwissen-

schaften in bernischen Landen (Bern, 1890). Also numerous bio-

graphical articles.

Gunther, S., Vermischte Untersuchungen zur Geschichte der

mathematischen Wissenschaften (Leipzig, 1876).

Gunther, S., Ziele und Resultate der neueren mathematisch-

historischen Forschung (Erlangen, 1876).

Hagen, J. G., Synopsis der hoheren Mathematik. Two volumes

(Berlin, 1891-93). ,

Hankel, H., Die Entwickelung der Mathematik in dem letzten

Jahrhundert (Tubingen, 1884).

Hermite, Ch., Discours prononce devant le president de la

republique le 5 aout 1889 a l'inauguration de la nouvelle Sorbonne.

Bulletin des Sciences mathematiques, 1890 ;
also Nature, Vol. XLI,

p. 597. (History of nineteenth-century mathematics in France.)

Hoefer, F., Histoire des mathematiques (Paris, 1879).

Isely, L., Essai sur l'histoire des mathematiques dans la Suisse

franchise (Neuchatel, 1884).

Jahrbuch iiber die Fortschritte der Mathematik (Berlin, annu-

ally, 1868 to date).

Marie, M., Histoire des sciences mathematiques et physiques.
Vols. X, XI, XII (Paris, 1887-88).

Matthiessen, L., Grundziige der antiken und modernen Algebra
der litteralen Gleichungen (Leipzig, 1878).
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Newcomb, S., Modern mathematical thought. Bulletin New
York Mathematical Society, Vol. Ill, p. 95; Nature, Vol. XLIX>
P- 325-

Poggendorff, J. C, Biographisch-literarisches Handworterbuch
zur Geschichte der exacten Wissenschaften. Two volumes (Leipzig,.

1863).

Quetelet, A., Sciences mathematiques et physiques chez les

Beiges au commencement du XIXe
siecle (Brussels, 1866).

Revue semestrielle des publications mathematiques redigee sous

les auspices de la Societe mathematique d'Amsterdam. 1893 to date.

(Current periodical literature.)

Roberts, R. A., Modern mathematics. Proceedings of the Irish

Academy, 1888.

Smith, H. J. S., On the present state and prospects of some
branches of pure mathematics. Proceedings of London Mathemat-
ical Society, 1876; Nature, Vol. XV, p. 79.

Sylvester, J. J., Address before the British Association. Nature,
Vol. I, pp. 237, 261.

Wolf, R., Handbuch der Mathematik. Two volumes (Zurich,

1872).

Zeitschrift fur Mathematik und Physik. Historisch-literarische

Abtheilung. Leipzig. The Abhandlungen zur Geschichte der

Mathematik are supplements.

For a biographical table of mathematicians see Fink's Ge-

schichte der Mathematik, p. 240. For the names and positions

of living mathematicians see the Jahrbuch der gelehrten Welt>

published at Strassburg!
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Axial projection, 72.

Bernoulli's theorem, 482.

Bibliography, 508, 568.
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theorem, 462.
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220, 221, 224, 345, 549-

Branch of a function, 251.

point, 252.

Canonical forms, 53 r

Calculus, 531.

of variations, 533.

Catenary, 14, 145, 327.

of uniform strength, 147^

Cauchy's expansion, 52.

theorem, 262, 264.
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Central axis, 456.

Centroids, 381, 386.

Chance, games of, 467.

Characteristic ratios in conies, no.
Clairaut's equation, 324.

Coaxial quaternions, 439.

Cofactors in determinants, 47, 62.

Combinations, 473.

Combinatory multiplication, 392.

Commutative law, 392.

Complete integral, 309, 333, 359,

362.

Complement, the, 399, 416.

Complementary function, 399, 416.

Composition of quantities, 453.

of rotations, 463.

of vectors, 428.

Complex hyperbolic functions, 140.

integrals, 261.

numbers, 138, 515.

roots, 31.

variable, 226-302.

Concurrent events, 479.

Conduction of heat, 183, 219.

Conformal representation, 236, 238,.

244.

Congruences, 512.

Conic ranges, 91.

Conies, points on, 107.
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Conies, projective generation of , 86,

561.

sectors of, no.

triangles of, no.

Conjugate functions, 245.

Cosine series, 192.

Consistence of equations, 58.

Continued fractions, 515.

Continuity of functions, 230.

Convergence, of series, 540.

uniform, 274.

Conversion hyperbolic formulas,
118.

Cooling of iron plate, 174.

Coplanar vectors, 426, 432.

Correlation, 74.

Correspondence in conies, 107.

Cosine series, 192.

Covariants, 529.

Critical lines, 298.

points, 250, 278.

regions, 298.

Cross ratio, 104.

Cubic equations, 17.

surfaces, 556.

Curves of second degree, 82.

Curvilinear integrals, 267.

Cusp locus, 319.

Cut, 251.

Cutting, 72.

Cylinder, floating, 13.

Deficiency curves, 548.

De Moivre's formula, 515.

quintic, 23.

Derivative equation, 9.

Derivatives of complex functions,

233-

gudermanians, 130.

hyperbolic func-

tions, 120, 122.

Descriptive geometry, 554.

Determinant array, 36.

Determinants, 33-69, 408, 526.

Development of determinants, 49, 52.

Differential calculus, 531.

equations, 172, 303-373,

535.

Differentiation, 54, 120, 322.

Direct probabilities, 476.

Dirichlet's conditions, 198.

Discontinuous groups, 526.

Discriminant, 319.

Distributive law, 392.

Doubly ruled surfaces, 102.

Duality of plane and point, 96.

principle of, 74.

Dynamo, 445.

Elastic catenary, 148.

Elementary functions, 229.

geometry, 564.

Electric charges, 177.

currents, 153, 305, 440, 452.

motor, 445.

Elements at infinity, 72.

of a group, 34.

of roots, 15.

Eliminant, 59, 61.

Elimination, 523.

Ellipse, functional relations, in.

Elliptic functions, 23, 107, 291, 522,

544.

modular functions, 549.

Equation of energy, 331.

Equations, differential, 169, 172,

303-373. 535-

solution of, 1-32.

theory of, 519.

Equilibrium of forces, 404.

Equipotential curves, 248.

Energy, equation of, 332.

Envelopes, 317.

Error function, 492.

Errors, theory of, 467-507, 550.

Essential singularity, 253.

Eulerian integrals, 532.

Exact differential equations, 308.

Expansion of hyperbolic functions,

123, 125.

Exponential expressions, 124.

functions, 229.

theorem, 460.

First integrals, 332, 333.

Flexure and tension, 151.

Flotation of bodies, 13.
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Fluid motion, 246.

Flux across a curve, 247.

magnetic, 445, 452.

Forces, equilibrium of, 404.

resultant of, 398, 430.

Forms, 530.

Fourier's series, 194, 196, 273, 542.

Fractions, continued, 514.

Functions, Bessel's, 169-220, 549.

determinantal, 37.

elliptic, 107, 522, 544.

harmonic, 169-225.

hyperbolic, 107-168.

of a complex variable,

226-302.

symbols for, 543.

theory of, 543.

with n values, 300.

Galois's group theory, 525.

Games of chance, 467.

Gamma functions, 488, 533.

General integrals, 359.

Geometric applications, 325.

elements, 70.

multiplication, 390.

representation, 227, 305.

Geometry, analytic, 552.

descriptive, 558.

elementary. 563.

modern, 558.

non-Euclidean, 104, 565.

projective, 76-106, 560.

Graphic representations, 232.

solution of equations, 3.

Graphs of equations, 9.

of hyperbolic functions, 132.

of laws of errors, 492, 496,

500, 503.

Grassmann's space analysis, 374
-

424.

Groups, 34, 524-

Gudermanian angle, 129.

function, 128.

tables of, 168.

Harmonic analysis, 169.

elements, 77.

functions, 169-225.

Heat conduction, 174, 183, 215, 219.

Hessian curve, 555.

History of modern mathematics,

508-570.

Holomorphic function, 256.

Homogeneous differential equations,

172, 311, 342.

linear equations, 60.

Horner's method, 2, 12, 519.

Howe truss strut problem, 21.

Hyperbola, functional relations,

in.

Hyperbolic functions, 107-168.

paraboloid. 99.

Hyperboloid of one nappe, 100.

Hyperdeterminants, 525.

Hyperelliptic functions, 546.

Hypergeometric series, 348, 540.

Icosahedron equation, 521.

Imaginaries, 141, 227, 516.

Infinitesimal calculus, 534.

Infinite series, 539.

Infinity, elements at, 73.

point at, 256.

Inner products, 401.

Integral calculus, 531.

Integral, complex, 261.

curvilinear, 267.

hyperbolic, 135.

one-valued function, 284.

probability, 483.

Integrals, 257, 3 3~373-

Intermediate differential equation,

366.

Interpolated values, 497.

Interpolation formulas, 541.

Invariants, 531.

Inverse probabilities, 484.

Inversions in permutations, 35.

Involution, 88.

Irrational numbers, 513.

Irrotational motion, 248.

Jacobians, 357.

Journals, mathematical, 509.

Kern curve, 88.
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Lagrange's equation, 356.

lines, 358.

resolvent, 15, 520.

series, 549.

Lam 's functions, 221.

Laplace's equation, 170, 203.

Laurent's series, 271.

Laws of error, 491.

Least squares, 470, 550.

Legendre's equation, 179.

Limiting values, 119.

Linear algebraic equations, 56.

differential equations, 172,

312, 336, 338, 368.

Literature, 436, 569.

Locus, 317, 319, 321.

Logarithmic branch point, 252.

discontinuity, 252.

expressions, 127.

functions, 229.

solution of equations,

32.

tables, 497, 499, 503.

Loxodrome, 150.

Maclaurin's configuration, 35.

series, 271.

Magnetic flux, 445, 449.

Magnification, 237.

Map drawing, 237.

Mathematical bibliography, 568.

history, 503-570.

periodicals, 509.

Mathematicians, living, 570.

Matrix, 60.

McClintock's method for equations,

29.

Mean error, 4^,3.

Mercator's projection, 151, 245.

Mereomorphic function, 256.

Metrical geometry, 104, 568.

Minimum surfaces, 557.

Minor determinants, 47.

Mittag-Leffler's theorem, 292, 548.

Models, 557.

Modern geometry, 558.

mathematics, 508-570.

Modulus of complex variable, 227.

Modulus of integral, 259.

Monge's equations, 367.

Monogenic function, 233, 235.

Multiplication, geometric, 390, 457.

theorem, 65.

Newton's approximation rule, 6.

Node locus, 321.

Non-Euclidean geometry, 104, 565.

Notations for determinants, 39.

for functions, 543.

for vectors, 427.

Numbers, projective definition, 104.

theory of, 511, 513.

Numerical equations, 10, 519.

Observations, errors of, 550.

Omega functions, 547.

One-valued functions, 226, 278.

Orders of determinants, 40.

Orthogonal trajectories, 326.

Parallel lines, 43, 566.

Partial derivatives, 245.

differential equations, 355,

305, 368, 535-

Particular integral, 337.

Pencils, 71.

Periodicals, 509.

Periodic functions, 169-225, 547.

Permutations, 34, 471.

Physics, 534.

Plane and point duality, 96.

Plane perspective, 76.

sects, 412.

vectors, 413.

Planes, sum of, 413.

Planimetric products, 390, 392.

Pliicker's equations, 554, 556.

Point analysis, 374-424.

at infinity, 256.

Points, sum of, 375.

Pole and polar, 87, 559, 561.

Polygons, 564.

Polygrams, 74.

Polyhedra, 564.

Polystims, 74.

Potential, 177, 534.

Primal forms, 70.
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Prime numbers, 512.

Primitive of differential, 307.

Probable error, 493.

Probabilities, 467-507, 550.

Product of arrays, 68.

of determinants, 67.

of points, 392, 410.

of sects, 394, 411.

of vectors, 394, 432, 444,

449.

of versors, 459.

Products, planimetric, 390, 392.

stereometric, 390, 410.

Projecting, 72.

Projective conic ranges, 91.

geometry, 70-106, 560.

Projectivity, 80.

Quadrantal versors, 457.

Quadratic equations, 16.

Quadric surfaces, 98.

Quantics, 528.

Quantity, complex, 515.

Quartic equations, 19.

Quaternions, 425-466, 517.

Quintic equations, 21, 520.

Raising the order, 55.

Reciprocal of vectors, 435.

determinants, 69.

Reciprocity, 512.

Rectangle inscribed in rectangle,

20, 25.

Reference systems, 386.

Regions, critical, 298.

Regula falsi, 5.

Removal of terms, n, 22, 520.

Representation, conformal, 236,238,

244.

geometric, 305.

graphic, 232.

Residues, 282, 512.

Resolvent equations, 17.

sextic, 23, 520.

Resultant error, 494.

Resultant of equations v 59, 61, 523.

of forces, 398.

of vectors, 429.

Roots of Bessel's functions, 225.

of equations, 1-32, 520.

of unity, 15.

Rotations, 463.

Rows and columns, 42.

Ruled quadric surfaces, 98.

Rules for versors, 457.

Sarrus's rule, 40.

Scalar products, 433, 446.

quantities, 375, 433.

Schools of mathematics, 509.

Second-degree curves, 82.

Semi-convergent series, 534.

Separation of roots, 8.

of variables, 304.

Series, convergence of, 274.

for roots, 27, 30.

Fourier's, 273.

infinite, 228, 342, 537.

Laurent's, 271'

Maclaurin's, 271.

Taylor's, 269.

trigonometric, 174, 542.

Sextic resolvent, 17, 520.

Simultaneous differential equations,

327-

Sine series, 188, 542.

Singular solutions, 317, 320, 537.

Singularity, essential, 253.

Solution of equations. 1-32, 519.

linear equations, 56.

Space analysis, 374-424, 425.

Sphere, conformal representation,

244.

depth of immersion, 13, 15.

Spherical harmonics, 169, 213.

trigonometry, 418, 457.

versors, 458.

Stereometric products, 391, 410.

Stirling's theorem, 482.

Stream function, 247.

Sturm's theorem, 2, 8, 12, 519.

Substitutions, 524.

Sum and difference formulas, 116.

of points, 375.

Surfaces, ruled, 98.

Surveying problems, 80.
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Sylvester's method of elimination,

'63.

Symbolic methods, 533.

Symmetric functions, 523.

Synectic function, 256.

Synthetic geometry, 552.

Systems of curves, 306, 325, 333.

of differential equations,

349-

Tables of Bessel's functions, 224.

of combinations, 475.

of gudermanians, 168.

of hyperbolic functions, 160-

168.

of permutations, 471.

of probability integral, 484.

of roots of Bessel's functions,

225.

of surface zonal harmonics,
222.

of values of Jo{xi) y 225.

Tabular values, 494, 503.

Tac locus, 318.

Taylor's series, 269.

Tension and flexure, 151.

in catenary, 14, 146.

Ternary forms, 509.

Tetrahedra, 412, 422.

Theory of errors, 467-507.

of functions, 226, 543.

of numbers, 511.

Theta functions, 546.

Torque, 455.

Tractory, 149.

Trajectories, 325.

Transcendent equations, I-IS

functions, 538.

numbers, 513.

Triangle, geometry of, 564.

Trigonometric series, 174, 200.

solution of equations,

24.

Trigonometry, 559.

Typical errors, 493.

Uniform convergence, 274, 541.

Uniform strength, catenary of, 147.

Variations, calculus of, 533.

Vector analysis, 425-466.

products, 434, 447.

quantities, 138, 374-466, 518.

Versors, 457.

Water pipe, 13.

Weierstrass's ^-function, 297, 548.

theorem, 287.

Weighted points, 378.

Whist, game of, 477.

Zero determinants, 62.

formulas, 51.

Zonal harmonics, 169, 177. 202, 20$

208, 212, 222.
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AGRICULTURE.

Cattle Feeding Dairy Practice Diseases of Animals

Gardening, Etc.

Armsby's Manual of Cattle Feeding, 12mo, $1 75

Downing's Fruit and Fruit Trees 9vo, 5 00

Grotenfelt's The Principles of Modern Dairy Practice. (Woll.)

12mo, 2 00

Kemp's Landscape Gardening 12mo, 2 50

Lloyd's Science of Agriculture 8vo, 4 00

Loudon's Gardening for Ladies. (Downing.) 12mo, 150

Steel's Treatise on the Diseases of the Dog 8vo, 3 50

" Treatise on the Diseases of the Ox 8vo, 6 00

Stockbridge's Rocks and Soils 8vo, 2 50

Woll's Handbook for Farmers and Dairymen 12mo, 1 50

ARCHITECTURE.
Building Carpentry Stairs Ventilation, Etc

Berg's Buildings and Structures of American Railroads 4to, 7 50

Birkmire's American Theatres Planning and Construction. 8vo, 3 00

" Architectural Iron and Steel 8vo, 3 50

Compound 'Riveted Girders 8vo, 2 00

" Skeleton Construction in Buildings 8vo, 3 001

Planning and Construction of High Office Buildings.
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Carpenter's Heating aud Ventilating of Buildings .Svo,

Downing, Cottages Svo,

" Hints to Architects ,8vo,

Freitag's Architectural Engineering Svo,

Gerhard's Sanitary House Inspection 16mo,
" Theatre Fires and Panics 12mo,

Hatfield's American House Carpenter 8vo,

Holly's Carpenter and Joiner 18mo,

Kidder's Architect and Builder's Pocket-book Morocco flap,

Merrill's Stones for Building and Decoration 8vo,

Monckton's Stair Building Wood, Iron, and Stone 4to,

Wait's Engineering and Architectural Jurisprudence 8vo,

Sheep,

Worcester's Small Hospitals Establishment and Maintenance,

including Atkinson's Suggestions for Hospital Archi-

tecture 12mo,

World's Columbian Exposition of 1893 4to,

ARMY, NAVY, Etc.

Military Engineering Ordnance Port Charges, Etc

Bourne's Screw Propellers 4to,

Bruff's Ordnance and Gunnery.
'

Svo,

Bucknill's Submarine Mines and Torpedoes 8vo,

Chase's Screw Propellers 8vo,

Cooke's Naval Ordnance 8vo,

Cronkhite's Gunnery for Non-com. Officers 18mo, morocco,

De Brack's Cavalry Outpost Duties. (Carr.) 18mo, morocco,

Dietz's Soldier's First Aid 12mo, morocco,
*
Dredge's Modern French Artillery 4to, half morocco,

" Record of the Transportation Exhibits Building,

World's Columbian Exposition of 1893. .4to, half morocco.

Dyer's Light Artillery 12mo,

Hoff's Naval Tactics 8vo,

Hunter's Port Charges 8vo, half morocco,

Ingalls's Ballistic Tables 8vo,

Handbook of Problems in Direct Fire Svo,

Mahan's Advanced Guard 18mo,

Permanent Fortifications. (Mercur.).8vo, half morocco,

Mercur's Attack of Fortified Places 12mo,
2

$3 00



$4 00



Thome's Structural Botany 18mo, $2 25

Westermaier's General Botany. (Schneider.) .8vo, 2 00

BRIDGES, ROOFS, Etc.

Cantilever Draw Highway Suspension.

(See also Engineering, p. 6. )

Boiler's Highway Bridges 8vo, 2 00

* " The Thames River Bridge 4to, paper, 5 00

Burr's Stresses in Bridges 8vo, 3 50

Crehore's Mechanics of the Girder 8vo,
,

5 00

Dredge's Thames Bridges 7 parts, per part, 1 25

Du Bois's Stresses in Framed Structures 4to, 10 00

Foster's Wooden Trestle Bridges 4to, 5 00

Greene's Arches in Wood, etc 8vo, 2 50

Bridge Trusses 8vo, 2 50

RoofTrusses 8vo, 125

Howe's Treatise on Arches 8vo, 4 00

Johnson's Modern Framed Structures ... .4to, 10 00

Merriman & Jacoby's Text-book of Roofs and Bridges.

Parti., Stresses 8vo, 2 50

Merriman & Jacoby's Text-book of Roofs and Bridges.

Part II., Graphic Statics : 8vo. 2 50

Merriman & Jacoby's Text-book of Roofs and Bridges.

Part III., Bridge Design Svo, 5 00

Merriman & Jacoby's Text- book of Roofs and Bridges.

Part IV., Continuous, Draw, Cantilever, Suspension, and

Arched Bridges (In preparation).

*Morison's The Memphis Bridge ..Oblong 4to, 10 00

Waddell's Iron Highway Bridges 8vo, 4 00
" De Pontibus (a Pocket-book for Bridge Engineers).

Wood's Construction of Bridges and Roofs 8vo, 2 00

Wright's Designing of Draw Spans 8vo,

CHEMISTRY.

Qualitative Quantitative Organic Inorganic Etc.

Adriance's Laboratory Calculations 12mo,
'

1 25

Allen's Tables for Iron Analysis .8vo, 3 00

Austeu's Notes for Chemical Students 12mo, 1 50

Bolton's Student's Guide in Quantitative Analysis. .8vo, 1 50

Classen's Analysis by Electrolysis. (Herrick and Boltwood.).8vo, 3 00



Crafts's Qualitative Analysis. (Schaeffer.) 12mo,

Drechsel's Chemical ReactioDS. (Merrill.). 12mo,

Fresenius's Quantitative Chemical Analysis. (Allen.) 8vo,

"
Qualitative

" "
(Johnson.) 8vo,

(Wells) Trans. 16th

German Edition 8vo,

Fuerte's Water and Public Health 12mo,

Gill's Gas and Fuel Analysis 12mo,

Hammarsten's Physiological Chemistry. (Maudel.) 8vo,

Helm's Principles of Mathematical Chemistry. (Morgan). 12mo,

Kolbe's Inorganic Chemistry 12mo,

Landauer's Spectrum Analysis. (Tingle.) 8vo,

Mandel's Bio-chemical Laboratory 12mo,

Mason's Water-supply 8vo,

"
Analysis of Potable Water (In the press).

Miller's Chemical Physics 8vo,

Mixter's Elementary Text-book of Chemistry 12mo,

Morgan's The Theory of Solutions and its Results 12mo,

Nichols's Water Supply (Chemical and Sanitary) 8vo,

O'Brine's Laboratory Guide to Chemical Analysis 8vo,

Perkins's Qualitative Analysis 12mo,

Pinner's Organic Chemistry. (Austen.) 12mo,

Ricketts and Russell's Notes on Inorganic Chemistry (Non-

metallic) Oblong 8vo, morocco,

Ruddimau's Incompatibilities in Prescriptions 8vo,

Schimpf's Volumetric Analysis 12mo,

Spencer's Sugar Manufacturer's Handbook . 12mo, morocco flaps,

" Handbook for Chemists of Beet Sugar House.

12mo, morocco,

Stockbridge's Rocks aud Soils 8vo,

Troilius's Chemistry of Iron 8vo,

Wiechmann's Chemical Lecture Notes 12mo,
"

Sugar Analysis 8vo,

Wulling's Inorganic Phar. and Med. Chemistry. 12mo,

DRAWING.

Elementary Geometrical Topographical.

Hill's Shades and Shadows and Perspective 8vo, 2 00

MacCord's Descriptive Geometry .8vo, 3 00
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$1 50



MacCord's Kinematics 8vo, $5 00

" Mechanical Drawing 8vo, 4 00

Mahan's Industrial Drawing. (Thompson.) 2 vols., 8vo, 3 50

Reed's Topographical Drawing. (II. A.) 4to, 5 00

Smith's Topographical Drawing. (Macmillan.) 8vo, 2 50

Warren's Descriptive Geometry 2 vols., 8vo, 3 50

"
Drafting Instruments 12mo, 1 25

' ' Free-hand Drawing 12mo, 1 00

"
Higher Linear Perspective 8vo, 3 50

** Linear Perspective 12mo, 1 00

"
. Machine Construction 2 vols., 8vo, 7 50

" Plane Problems ., 12mo, 125
"

Primary Geometry 12mo, 75

" Problems and Theorems
j

8vo, 2 50

"
Projection Drawing . ,12mo, 150

*' Shades and Shadows 8vo, 3 00

"
Stereotomy Stone Cutting 8vo, 2 50

Whelpley's Letter Engraving 12mo, 2 00

ELECTRICITY AND MAGNETISM.
Illumination Batteries Physics.

Anthony and Brackett's Text-book of Physics (Magie). . . .8vo,

Barker's Deep-sea Soundings 8vo,

Benjamin's Voltaic Cell 8vo,

"
History of Electricity 8vo

Cosmic Law of Thermal Repulsion 18mo,

Crehore and Squier's Experiments with a New Polarizing Photo-

Chronograpb 8vo,

*
Dredge's Electric Illuminations. . . .2 vols., 4to, half morocco,

Vol.11 4to,

Gilbert's De magnete. (Mottelay.) 8vo,

Holman's Precision of Measurements 8vo,

Michie's Wave Motion Relating to Sound and Light, Svo,

Morgan's The Theory of Solutions and its Results 12mo,

Niaudet's Electric Batteries. (Fishback.) 12mo,

Reagan's Steam and Electrical Locomotives 12mo

Thurston's Stationary Steam Engines for Electric Lighting Pur-

poses 12mo,

Tillman's Heat 8vo,
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4 00



ENGINEERING.

Civil Mechanical Sanitary, Etc.

(See also Bridges, p. 4
; Hydraulics, p. 8

; Materials of En-

gineering, p. 9 ; Mechanics and Machinery, p. 11
; Steam Engines

and Boilers, p. 14.)

Baker's Masonry Construction 8vo, $5 00

Baker's Surveying Instruments 12mo, 3 00

Black's U. S. Public Works 4to, 5 00

Brook's Street Railway Location 12mo, morocco, 1 50

Butts's Engineer's Field-book 12mo, morocco, 2 50

Byrne's Highway Construction 8vo, 7 50

Carpenter's Experimental Engineering 8vo, 6 00

Church's Mechanics of Engineering Solids and Fluids 8vo, 6 00
" Notes and Examples in Mechanics 8vo, 2 00

Crandall's Earthwork Tables 8vo, 1 50

Crandall's The Transition Curve 12mo, morocco, 1 50

*
Dredge's Penn. Railroad Construction, etc. . . Folio, half mor., 20 00

* Drinker's Tunnelling 4to, half morocco, 25 00

Eissler's Explosives Nitroglycerine and Dynamite 8vo, 4 00

Gerhard's Sanitary House Inspection 16mo, 1 00

Godwiu's Railroad Engineer's Field-book. 12mo, pocket-bk. form, 2 50

Gore's Elements of Geodesy 8vo, 2 50

Howard's Transition Curve Field-book 12mo, morocco flap, 1 50

Howe's Retaining Walls (New Edition.) , 12mo, 1 25

Hudson's Excavation Tables. Vol. II r 8vo, 1 00

Hutton's Mechanical Engineering of Power Plants 8vo, 5 00

Johnson's Materials of Construction 8vo, 6 00

Johnson's Stadia Reduction Diagram. .Sheet, 22 X 28 inches, 50

' '

Theory and Practice of Surveying 8vo, 4 00

Kent's Mechanical Engineer's Pocket-book 12mo, morocco, 5 00

Kiersted's Sewage Disposal 12mo, 1 25

Kirkwood's Lead Pipe for Service Pipe 8vo, 1 50

Mahan's Civil Engineering. (Wood.) 8vo, 5 00

Merriman and Brook's Handbook for Surveyors. . . .12mo, mor., 2 00

Merriman's Geodetic Surveying 8vo, 2 00

"
Retaining Walls and Masonry Dams 8vo, 2 00

Mosely's Mechanical Engineering. (Mahan.) 8vo, 5 00

Nagle's Manual for Railroad Engineers 12mo, morocco, 3 00
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Pattern's Civil Engineering ,8vo, $7 50

Foundations 8vo, 5 00

Rockwell's Roads and Pavements in France 12mo, 1 25

Ruff uer's Non-tidal Rivers 8vo, 1 25

Searles's Field Engineering 12mo, morocco flaps, 3 00

" Railroad Spiral 12mo, morocco flaps, 1 50

Siebert and Biggin's Modern Stone Cutting and Masonry. . .8vo, 1 50

Smith's Cable Tramways 4to, 2 50
" "Wire Manufacture and Uses 4to, 3 00

Spalding's Roads and Pavements 12mo, 2 00
"

Hydraulic Cement 12mo, 2 00

Thurston's Materials of Construction 8vo, 5 00

* Trautwiue's Civil Engineer's Pocket-book. ..12mo, mor. flaps, 5 00

* " Cross-section Sheet, 25

* " Excavations and Embankments 8vo, 2 00

* "
Laying Out Curves 12mo, morocco, 2 50

Waddell's De Pontibus (A Pocket-book for Bridge Engineers.)

Wait's Engineering and Architectural Jurisprudence 8vo, 6 00

Sheep, 6 50

Warren's Stereotomy Stone Cutting 8vo, 2 50

Webb's Engineering Instruments 12mo, morocco, 1 00

Wegmann's Construction of Masonry Dams 4to, 5 00

Wellington's Location of Railways 8vo, 5 00

Wheeler's Civil Engineering 8vo, 4 00

Wolff's Windmill as a Prime Mover 8vo, 3 00

HYDRAULICS.
Water-wheels Windmills Service Pipe Drainage, Etc.

(See also Engineering, p. 6.)

Bazin's Experiments upon the Contraction of the Liquid Vein

(Trautwiue) 8vo, 2 00

Bovey's Treatise on Hydraulics 8vo, 4 00

Coffin's Graphical Solution of Hydraulic Problems 12mo, 2 50

Ferrel's Treatise on the Winds, Cyclones, and Tornadoes. . .Svo, 4 00

Fuerte's Water and Public Health 12mo, 1 50

Ganguillet& Kutter'sFlow of Water. (Hering& Trautwine.).8vo, 4 00

Hazen's Filtration of Public Water Supply 8vo, 2 00

Herschel's 115 Experiments 8vo, 2 00

Kiersted's Sewage Disposal 12mo, 1 25



Kirkwood's Lead Pipe for Service Pipe 8vo, $1 50

Mason's Water Supply 8vo, 5 00

Merrimau's Treatise on Hydraulics. . 8vo, 4 00

Nichols's Water Supply (Chemical and Sanitary) 8vo, 2 50

Ruffner's Improvement for Non-tidal Rivers 8vo, 1 25

Wegmaun's Water Supply of the City of New York 4to, 10 00

Weisbach's Hydraulics. (Du Bois.) 8vo, 5 00

Wilson's Irrigation Engineering ... .8vo, 4 00

Wolff's Windmill as a Prime Mover 8vo, 3 00

Wood's Theory of Turbines
, 8vo, 2 50

MANUFACTURES.

Aniline Boilers Explosives Iron Sugar Watches
Woollens, Etc.

Allen 's Tables for Iron Analysis 8vo,

Beaumont's Woollen and Worsted Manufacture 12mo,

Bolland's Encyclopaedia of Founding Terms 12mo,

The Iron Founder 12mo,
" " " "

Supplement 12mo,

Booth's Clock and Watch Maker's Manual 12mo,

Bouvier's Handbook on Oil Painting 12mo,

Eissler's Explosives, Nitroglycerine and Dynamite 8vo,

Ford's Boiler Making for Boiler Makers 18mo,

Metcalfe's Cost of Manufactures 8vo,

Metcalf 's Steel A Manual for Steel Users 12mo,

Reimann's Aniline Colors. (Crookes.). ... 8vo,

*
Reisig's Guide to Piece Dyeing 8vo,

Spencer's Sugar Manufacturer's Handbook. . . .12mo, mor. flap,

" Handbook for Chemists of Beet Houses.

12mo, mor. flap,

Svedelius's Handbook for Charcoal Burners 12mo,

The Lathe and Its Uses . . 8vo,

Thurston's Manual of Steam Boilers 8vo,

Walke's Lectures on Explosives 8vo,

West's American Foundry Practice 12mo,

Moulder's Text-book 12mo,

Wiechmann's Sugar Analysis 8vo,

Woodbury's Fire Protection of Mills 8vo,

3 00



MATERIALS OF ENGINEERING.

Strength Elasticity Resistance, Etc.

{See also Engineering, p. 6.)

Baker's Masonry Construction 8vo,

Beardslee and Kent's Strength of Wrought Iron 8vo,

Bovey's Strength of Materials 8vo,

Burr's Elasticity and Resistance of Materials Svo,

Byrne's Highway Construction Svo,

Carpenter's Testing Machines and Mettfods of Testing Materials

Church's Mechanic's of Engineering Solids and Fluids 8vo,

Du Bois's Stresses in Framed Structures 4to,

Hatfield's Transverse Strains 8vo,

Johnson's Materials of Construction 8vo,

Lanza's Applied Mechanics. . .'. Svo,

'

Strength of Wooden Columns Svo, paper,

Merrill's Stones for Building and Decoration 8vo,

Merriman's Mechanics of Materials 8vo,

'

Strength of Materials , 12mo,

Patton's Treatise on Foundations .Svo,

Rockwell's Roads and Pavements in France 12mo,

Spalding's Roads and Pavements 12mo,

Thurston's Materials of Construction , , Svo,

Thurston's Materials of Engineering 3 vols., 8vo,

Vol. I., Non-metallic 8vo,

Vol. II., Iron and Steel 8vo,

Vol. III., Alloys, Brasses, and Bronzes 8vo,

Weyrauch's Strength of Iron and Steel. (Du Bois.) 8vo,

Wood's Resistance of Materials 8vo,

MATHEMATICS.

Calculus Geometry Trigonometry, Etc.

Baker's Elliptic Functions 8vo, 1 50

Ballard's Pyramid Problem 8vo, 1 50

Barnard's Pyramid Problem 8vo, 1 50

Bass's Differential Calculus 12mo, 4 00

Brigg's Plane Analytical Geometry 12mo, 1 00

Chapman's Theory of Equations 12mo, 1 50
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Chessin's Elements of the Theory of Functions

Compton's Logarithmic Computations 12mo,

Craig's Linear Differential Equations 8vo,

Davis's Introduction to the Logic of Algebra. . 8vo,

Halsted's Elements of Geometry ..8vo,

"
Synthetic Geometry 8vo,

Johnson's Curve Tracing 12mo,
" Differential Equations Ordinary and Partial 8vo,

"
Integral Calculus 12mo,

" "
Unabridged

" Least Squares 12mo,

Ludlow's Logarithmic and Other Tables. (Bass.) 8vo,

"
Trigonometry with Tables. (*Bass.) 8vo,

Mahan's Descriptive Geometry (Stone Cutting) 8vo,

Merriman and Woodward's Higher Mathematics 8vo,

Merriman's Method of Least Squares 8vo,

Parker's Quadrature of the Circle 8vo,

Rice and Johnson's Differential and Integral Calculus,

2 vols, in 1, 12mo,
"

Differential Calculus 8vo,
"

Abridgment of Differential Calculus 8vo,

Searles's Elements of Geometry. 8vo,

Totten's Metrology 8vo,

Warren's Descriptive Geometry 2 vols., 8vo,

"
Drafting Instruments 12mo,

" Free-hand Drawing 12mo,
"

Higher Linear Perspective 8vo,
" Linear Perspective 12mo,
"

Primary Geometry 12mo,
" Plane Problems .12mo,
" Plane Problems 12mo,
* Problems and Theorems 8vo,
"

Projection Drawing 12mo,

Wood's Co-ordinate Geometry 8vo,

Trigonometry 12mo,

Woolfs Descriptive Geometry Royal 8vo,

11
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MECHANICS-MACHINERY.
Text-books and Practical Works.

(See also Engineering, p. 6.)

Baldwin's Steam Heating for Buildings 12mo,

Benjamin's Wrinkles and Recipes 12mo,

Carpenter's Testing Machines and Methods of Testing

Materials 8vo,

Chordal's Letters to Mechanics 12mo,

Church's Mechanics of Engineering 8vc,
" Notes and Examples in Mechanics 8vo,

Crehore's Mechanics of the Girder 8vo,

Cromwell's Belts and Pulleys 12mo,
" Toothed Gearing 12mo,

Compton's First Lessons in Metal Working 12mo,

Dana's Elementary Mechanics 12mo,

Dingey's Machinery Pattern Making 12mo,

Dredge's Trans. Exhibits Building, World Exposition,

4to, half morocco,

Du Bois's Mechanics. Vol. I., Kinematics 8vo,

Vol. II., Statics 8vo,
" Vol. III., Kinetics : 8vo,

Fitzgerald's Boston Machinist 18mo,

Flather's Dynamometers 12mo,
"

Rope Driving 12mo,

Hall's Car Lubrication 12mo,

Holly's Saw Filing 18mo,

Jones Machine Design. Part I, Kinematics 8vo,

"
ffi.J

" Part II, Strength and Proportion of

Machine Parts

Lanza's Applied Mechanics
e . . . .8vo,

MacCord's Kinematics 8vo,

Merriman's Mechanics of Materials .8vo.

Metcalfe's Cost of Manufactures 8vo,

Michie's Analytical Mechanics 8vo,

Mosely's Mechanical Engineering. (Mahan.) .8vo,

Richards's Compressed Air 12mo,

Robinson's Principles of Mechanism 8vo,

Smith's Press-working of Metals 8vo,

12
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The Lathe aud Its Uses 8vo, $6 00

Thurston's Friction aud Lost Work 8vo, 3 00

The Animal as a Machine , 12mo, 1 00

Warren's Machine Construction 2 vols., 8vo, 7 50

Weisbach's Hydraulics and Hydraulic Motors. (Du Bois.)..8vo, 5 00

Mechanics of Engineering. Vol. III., Part I.,

Sec. I. (Klein.)... 8vo, 5 00

Weisbach's Mechanics of Engineering. Vol. III., Part I.,

Sec.II (Klein.) \ 8vo, 5 00

Weisbach's Steam Engines. (Du Bois.) ., 8vo, 5 00

Wood's Analytical Mechauics 8vo, 3 00

"
Elementary Mechanics 12mo, 125

" " "
Supplement and Key 125

METALLURGY.

Iron Gold Silver Alloys, Etc.

Allen's Tables for Iron Analysis 8vo, 3 00

Egleston's Gold and Mercury 8vo, 7 50

Metallurgy of Silver 8vo, 7 50

* Kerl's Metallurgy Copper and Iron. 8vo, 15 00

* " "
Steel, Fuel, etc 8vo, 15 00

Kunhardt's Ore Dressing in Europe 8vo, 1 50

Metcalf Steel A Manual for Steel Users . . 12mo, 2 00

O'Driscoll's Treatment of Gold Ores 8vo, 2 00

Thurston's Iron aud Steel 8vo, 3 50

Alloys 8vo, 2 50

Wilson's Cyanide Processes. ...
'

12mo, 1 50

MINERALOGY AND MINING.

Mine Accidents Ventilation ,Ore.Dressing, Etc.

Barringer's Minerals of Commercial Value oblong morocco, 2 50

Beard's Ventilation of Mines 12mo, 2 50

Boyd's Resources of South "Western Virginia 8vo, 3 00

Map of South Western Virginia Pocket-book form, 2 00

Brush and Penfield's Determinative Mineralogy 8vo, 3 50

Chester's Catalogue of Minerals 8vo, 1 25

" " " "
paper, 50

Dictionary of the Names of Minerals 8vo, 3 00

Dana's American Localities of Minerals .8vo, 1 00
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Dana's Descriptive Mineralogy (E. S.) 8vo, half morocco, $12 50
"

Mineralogy and Petrography. (J. D.) 12rno, 2 00
" Minerals and How to Study Them. (E. S.) 12mo, 1 50
" Text-book of Mineralogy. (E. S.) 8vo, 3 50

*Drinker's Tunnelling, Explosives, Compounds, and Rock Drills.

4to, half morocco, 25 00

Egleston's Catalogue of Minerals and Synonyms 8vo, 2 50

Eissler's Explosives Nitroglycerine and Dynamite 8vo, 4 00

Goodyear's Coal Mines of the Western Coast 12mo, 2 50

Hussak's Rock forming Minerals. (Smith.) 8vo, 2 00

Ihlseng's Manual of Mining. . 8vo, 4 00

Kunhardt's Ore Dressing in Europe , 8vo, 1 50

O'Driscoll's Treatment of Gold Ores 8vo, 2 00

Rosenbusch's Microscopical Physiography of Minerals and

Rocks. (Iddings.) 8vo, 5 00

Sawyer's Accidents in Mines .8vo, 7 00

StDokbridge's Rocks and Soils 8vo, 2 50

Walke's Lectures on Explosives 8vo, 4 00

Williams's Lithology 8vo. 3 00

Wilson's Mine Ventilation 16mo, 1 25

STEAM AND ELECTRICAL ENGINES, BOILERS, Etc.

Stationary Marine Locomotive Gas Engines, Etc.

{fiee also Engineering, p. 6.)

Baldwin's Steam Heating for Buildings 12mo,
Clerk's Gas Engine. t c 12mo,
Ford's Boiler Making for Boiler Makers 18mo,

Hemenway's Indicator Practice 12mo,

Hoadley's Warm-blast Furuace 8vo,

Kneass's Practice and Theory of the Injector 8vo,

MacCord's Slide Valve 8vo,
* Maw's Marine Engines .Folio, half morocco,

Meyer's Modern Locomotive Construction 4to,

Peabody and Miller's Steam Boilers , 8vo,

Peabody's Tables of Saturated Steam 8vo,

Thermodynamics of the Steam Engine 8vo,

Valve Gears for the Steam Engine 8vo,

Pray's Twenty Years with the Indicator Royal 8vo,

Pupin and Osterberg's Thermodynamics 12mo,

Reagan's Steam and Electrical Locomotives 12mo,

Rontgen's Thermodynamics. (Du Bois.) 8vo,

Sinclair's Locomotive Running 12mo,
Thurston's Boiler Explosion , 12mo,
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